Spring Batch is a lightweight, comprehensive batch framework designed to enable the development of robust batch applications vital for the daily operations of enterprise systems. Spring Batch builds upon the characteristics of the Spring Framework that people have come to expect (productivity, POJO-based development approach, and general ease of use), while making it easy for developers to access and leverage more advance enterprise services when necessary. Spring Batch is not a scheduling framework. There are many good enterprise schedulers (such as Quartz, Tivoli, Control-M, etc.) available in both the commercial and open source spaces. It is intended to work in conjunction with a scheduler, not replace a scheduler.
Spring Batch is also a minimalistic framework to run batch processing applications. It provides reusable functions that are essential in processing large volumes of records, including logging/tracing, transaction management, job processing statistics, job restart, skip, and resource management. It also provides more advanced technical services and features that will enable extremely high-volume and high-performance batch jobs through optimization and partitioning techniques. Simple as well as complex, high-volume batch jobs can leverage the framework in a highly scalable manner to process significant volumes of information.
Spring Batch provides reusable functions that are essential in processing large volumes of records, including logging/tracing, transaction management, job processing statistics, job restart, skip, and resource management. It also provides more advanced technical services and features that enable extremely high-volume and high performance batch jobs through optimization and partitioning techniques. Spring Batch can be used in both simple use cases (such as reading a file into a database or running a stored procedure) as well as complex, high volume use cases (such as moving high volumes of data between databases, transforming it, and so on). High-volume batch jobs can leverage the framework in a highly scalable manner to process significant volumes of information.
Usage Scenarios
A typical batch program generally:
- Reads a large number of records from a database, file, or queue.
- Processes the data in some fashion.
- Writes back data in a modified form.
- Write a large number of records into a database, file, or queue.
Spring Batch automates this basic batch iteration, providing the capability to process similar transactions as a set, typically in an offline environment without any user interaction. Batch jobs are part of most IT projects, and Spring Batch is the only open source framework that provides a robust, enterprise-scale solution.
Many applications within the enterprise domain require bulk processing to perform business operations in mission critical environments. These business operations include:
- Automated, complex processing of large volumes of information that is most efficiently processed without user interaction. These operations typically include time-based events (such as month-end calculations, notices, or correspondence).
- Periodic application of complex business rules processed repetitively across very large data sets (for example, insurance benefit determination or rate adjustments).
- Integration of information that is received from internal and external systems that typically requires formatting, validation, and processing in a transactional manner into the system of record. Batch processing is used to process billions of transactions every day for enterprises.
Technical Objectives
- Batch developers use the Spring programming model: Concentrate on business logic and let the framework take care of infrastructure.
- Clear separation of concerns between the infrastructure, the batch execution environment, and the batch application.
- Provide common, core execution services as interfaces that all projects can implement.
- Provide simple and default implementations of the core execution interfaces that can be used 'out of the box'.
- Easy to configure, customize, and extend services, by leveraging the spring framework in all layers.
- All existing core services should be easy to replace or extend, without any impact to the infrastructure layer.
- Provide a simple deployment model, with the architecture JARs completely separate from the application, built using Maven.
Spring Batch Architecture
The figure below shows the layered architecture that supports the extensibility and ease of use for end-user developers.
This layered architecture highlights three major high-level components: Application,
Core, and Infrastructure. The application contains all batch jobs and custom code written
by developers using Spring Batch. The Batch Core contains the core runtime classes
necessary to launch and control a batch job. It includes implementations for
JobLauncher
, Job
, and Step
. Both Application and Core are built on top of a common
infrastructure.
The Domain Language of Batch
To any experienced batch architect, the overall concepts of batch processing used in
Spring Batch should be familiar and comfortable. There are "Jobs" and "Steps" and
developer-supplied processing units called ItemReader
and ItemWriter
.
The following diagram is a simplified version of the batch reference architecture that has been used for decades. It provides an overview of the components that make up the domain language of batch processing. This architecture framework is a blueprint that has been proven through decades of implementations on the last several generations of platforms (COBOL/Mainframe, C/Unix, and now Java/anywhere). JCL and COBOL developers are likely to be as comfortable with the concepts as C, C#, and Java developers. Spring Batch provides a physical implementation of the layers, components, and technical services commonly found in the robust, maintainable systems that are used to address the creation of simple to complex batch applications, with the infrastructure and extensions to address very complex processing needs.
The preceding diagram highlights the key concepts that make up the domain language of
Spring Batch. A Job has one to many steps, each of which has exactly one ItemReader
,
one ItemProcessor
, and one ItemWriter
. A job needs to be launched (with
JobLauncher
), and metadata about the currently running process needs to be stored (in
JobRepository
).
Job
A Job
is an
entity that encapsulates an entire batch process. As is common with other Spring
projects, a Job
is wired together with either an XML configuration file or Java-based
configuration. This configuration may be referred to as the "job configuration". However,
Job
is just the top of an overall hierarchy, as shown in the following diagram:
In Spring Batch, a Job
is simply a container for Step
instances. It combines multiple
steps that belong logically together in a flow and allows for configuration of properties
global to all steps, such as restartability. The job configuration contains:
- The simple name of the job.
- Definition and ordering of
Step
instances. - Whether or not the job is restartable.
for example:
@Bean
public Job footballJob() {
return this.jobBuilderFactory.get("footballJob")
.start(playerLoad()) //step
.next(gameLoad()) //step
.next(playerSummarization()) /step
.build();
}
.1. JobInstance
A JobInstance
refers to the concept of a logical job run. Each JobInstance
can have multiple
executions (JobExecution
is discussed in more detail later in this chapter), and only
one JobInstance
corresponding to a particular Job
and identifying JobParameters
can
run at a given time.
The definition of a JobInstance
has absolutely no bearing on the data to be loaded.
It is entirely up to the ItemReader
implementation to determine how data is loaded. Using a new JobInstance
means 'start from the
beginning', and using an existing instance generally means 'start from where you left
off'.
.2. JobParameters
Having discussed JobInstance
and how it differs from Job, the natural question to ask
is: "How is one JobInstance
distinguished from another?" The answer is:
JobParameters
. A JobParameters
object holds a set of parameters used to start a batch
job. They can be used for identification or even as reference data during the run, as
shown in the following image:
In the preceding example, where there are two instances, one for January 1st, and another
for January 2nd, there is really only one Job
, but it has two JobParameter
objects:
one that was started with a job parameter of 01-01-2017 and another that was started with
a parameter of 01-02-2017. Thus, the contract can be defined as: JobInstance
= Job
+ identifying JobParameters
. This allows a developer to effectively control how a
JobInstance
is defined, since they control what parameters are passed in.
Not all job parameters are required to contribute to the identification of a
JobInstance . By default, they do so. However, the framework also allows the submission
of a Job with parameters that do not contribute to the identity of a JobInstance .
|
.3. JobExecution
A JobExecution
refers to the technical concept of a single attempt to run a Job. An
execution may end in failure or success, but the JobInstance
corresponding to a given
execution is not considered to be complete unless the execution completes successfully.
Using the EndOfDay Job
described previously as an example, consider a JobInstance
for
01-01-2017 that failed the first time it was run. If it is run again with the same
identifying job parameters as the first run (01-01-2017), a new JobExecution
is
created. However, there is still only one JobInstance
.
Step
A Step
is a domain object that encapsulates an independent, sequential phase of a batch
job. Therefore, every Job is composed entirely of one or more steps. A Step
contains
all of the information necessary to define and control the actual batch processing. As
with a Job
, a Step
has an individual StepExecution
that correlates with a unique
JobExecution
, as shown in the following image:
1. StepExecution
A StepExecution
represents a single attempt to execute a Step
. A new StepExecution
is created each time a Step
is run, similar to JobExecution
. However, if a step fails
to execute because the step before it fails, no execution is persisted for it. A
StepExecution
is created only when its Step
is actually started.
Step
executions are represented by objects of the StepExecution
class. Each execution
contains a reference to its corresponding step and JobExecution
and transaction related
data, such as commit and rollback counts and start and end times. Additionally, each step
execution contains an ExecutionContext
, which contains any data a developer needs to
have persisted across batch runs, such as statistics or state information needed to
restart. The following table lists the properties for StepExecution
:
Property |
Definition |
Status |
A |
startTime |
A |
endTime |
A |
exitStatus |
The |
executionContext |
The "property bag" containing any user data that needs to be persisted between executions. |
readCount |
The number of items that have been successfully read. |
writeCount |
The number of items that have been successfully written. |
commitCount |
The number of transactions that have been committed for this execution. |
rollbackCount |
The number of times the business transaction controlled by the |
readSkipCount |
The number of times |
processSkipCount |
The number of times |
filterCount |
The number of items that have been 'filtered' by the |
writeSkipCount |
The number of times |
ExecutionContext
An ExecutionContext
represents a collection of key/value pairs that are persisted and
controlled by the framework in order to allow developers a place to store persistent
state that is scoped to a StepExecution
object or a JobExecution
object. For those
familiar with Quartz, it is very similar to JobDataMap. The best usage example is to
facilitate restart. Using flat file input as an example, while processing individual
lines, the framework periodically persists the ExecutionContext
at commit points. Doing
so allows the ItemReader
to store its state in case a fatal error occurs during the run
or even if the power goes out. All that is needed is to put the current number of lines
read into the context, as shown in the following example, and the framework will do the
rest:
executionContext.putLong(getKey(LINES_READ_COUNT), reader.getPosition());
Using the EndOfDay example from the Job
Stereotypes section as an example, assume there
is one step, 'loadData', that loads a file into the database.
It is also important to note that there is at least one ExecutionContext
per
JobExecution
and one for every StepExecution
. For example, consider the following
code snippet:
ExecutionContext ecStep = stepExecution.getExecutionContext();
ExecutionContext ecJob = jobExecution.getExecutionContext();
//ecStep does not equal ecJob
As noted in the comment, ecStep
does not equal ecJob
. They are two different
ExecutionContexts
. The one scoped to the Step
is saved at every commit point in the
Step
, whereas the one scoped to the Job is saved in between every Step
execution.
JobRepository
JobRepository
is the persistence mechanism for all of the Stereotypes mentioned above.
It provides CRUD operations for JobLauncher
, Job
, and Step
implementations. When a
Job
is first launched, a JobExecution
is obtained from the repository, and, during
the course of execution, StepExecution
and JobExecution
implementations are persisted
by passing them to the repository.
When using Java configuration, the @EnableBatchProcessing
annotation provides a
JobRepository
as one of the components automatically configured out of the box.
JobLauncher
JobLauncher
represents a simple interface for launching a Job
with a given set of
JobParameters
, as shown in the following example:
public interface JobLauncher {
public JobExecution run(Job job, JobParameters jobParameters)
throws JobExecutionAlreadyRunningException, JobRestartException,
JobInstanceAlreadyCompleteException, JobParametersInvalidException;
}
It is expected that implementations obtain a valid JobExecution
from the
JobRepository
and execute the Job
.
Item Reader
ItemReader
is an abstraction that represents the retrieval of input for a Step
, one
item at a time. When the ItemReader
has exhausted the items it can provide, it
indicates this by returning null
. More details about the ItemReader
interface and its
various implementations can be found in
Readers And Writers.
Item Writer
ItemWriter
is an abstraction that represents the output of a Step
, one batch or chunk
of items at a time. Generally, an ItemWriter
has no knowledge of the input it should
receive next and knows only the item that was passed in its current invocation. More
details about the ItemWriter
interface and its various implementations can be found in
Readers And Writers.
Item Processor
ItemProcessor
is an abstraction that represents the business processing of an item.
While the ItemReader
reads one item, and the ItemWriter
writes them, the
ItemProcessor
provides an access point to transform or apply other business processing.
If, while processing the item, it is determined that the item is not valid, returning
null
indicates that the item should not be written out. More details about the
ItemProcessor
interface can be found in
Readers And Writers.
Configuring and Running a Job
In the domain section , the overall architecture design was discussed, using the following diagram as a guide:
While the Job
object may seem like a simple
container for steps, there are many configuration options of which a
developer must be aware. Furthermore, there are many considerations for
how a Job
will be run and how its meta-data will be
stored during that run. This chapter will explain the various configuration
options and runtime concerns of a Job
.
.1. Configuring a Job
There are multiple implementations of the Job
interface. However,
builders abstract away the difference in configuration.
@Bean
public Job footballJob() {
return this.jobBuilderFactory.get("footballJob")
.start(playerLoad())
.next(gameLoad())
.next(playerSummarization())
.build();
}
A Job
(and typically any Step
within it) requires a JobRepository
. The
configuration of the JobRepository
is handled via the BatchConfigurer
.
The above example illustrates a Job
that consists of three Step
instances. The job related
builders can also contain other elements that help with parallelisation (Split
),
declarative flow control (Decision
) and externalization of flow definitions (Flow
).
.1.1. Restartability
One key issue when executing a batch job concerns the behavior of a Job
when it is
restarted. The launching of a Job
is considered to be a 'restart' if a JobExecution
already exists for the particular JobInstance
. Ideally, all jobs should be able to start
up where they left off, but there are scenarios where this is not possible. It is
entirely up to the developer to ensure that a new JobInstance
is created in this
scenario. However, Spring Batch does provide some help. If a Job
should never be
restarted, but should always be run as part of a new JobInstance
, then the
restartable property may be set to 'false'.
The following example shows how to set the restartable
field to false
in Java:
@Bean
public Job footballJob() {
return this.jobBuilderFactory.get("footballJob")
.preventRestart()
...
.build();
}
To phrase it another way, setting restartable to false means “this
Job
does not support being started again”. Restarting a Job
that is not
restartable causes a JobRestartException
to
be thrown.
Job job = new SimpleJob();
job.setRestartable(false);
JobParameters jobParameters = new JobParameters();
JobExecution firstExecution = jobRepository.createJobExecution(job, jobParameters);
jobRepository.saveOrUpdate(firstExecution);
try {
jobRepository.createJobExecution(job, jobParameters);
fail();
}
catch (JobRestartException e) {
// expected
}
This snippet of JUnit code shows how attempting to create a
JobExecution
the first time for a non restartable
job will cause no issues. However, the second
attempt will throw a JobRestartException
.
.1.2. Intercepting Job Execution
During the course of the execution of a
Job, it may be useful to be notified of various
events in its lifecycle so that custom code may be executed. The
SimpleJob
allows for this by calling a
JobListener
at the appropriate time:
public interface JobExecutionListener {
void beforeJob(JobExecution jobExecution);
void afterJob(JobExecution jobExecution);
}
JobListeners
can be added to a SimpleJob
by setting listeners on the job.
The following example shows how to add a listener method to a Java job definition:
@Bean
public Job footballJob() {
return this.jobBuilderFactory.get("footballJob")
.listener(sampleListener())
...
.build();
}
It should be noted that the afterJob
method is called regardless of the success or
failure of the Job
. If success or failure needs to be determined, it can be obtained
from the JobExecution
, as follows:
public void afterJob(JobExecution jobExecution){
if (jobExecution.getStatus() == BatchStatus.COMPLETED ) {
//job success
}
else if (jobExecution.getStatus() == BatchStatus.FAILED) {
//job failure
}
}
The annotations corresponding to this interface are:
- @BeforeJob
- @AfterJob
.2. JobParametersValidator
A job declared in the XML namespace or using any subclass of
AbstractJob
can optionally declare a validator for the job parameters at
runtime. This is useful when for instance you need to assert that a job
is started with all its mandatory parameters. There is a
DefaultJobParametersValidator
that can be used to constrain combinations
of simple mandatory and optional parameters, and for more complex
constraints you can implement the interface yourself.
The configuration of a validator is supported through the java builders, as shown in the following example:
@Bean
public Job job1() {
return this.jobBuilderFactory.get("job1")
.validator(parametersValidator())
...
.build();
}
.3 Java Config
Spring 3 brought the ability to configure applications via java instead of XML. As of
Spring Batch 2.2.0, batch jobs can be configured using the same java config.
There are two components for the java based configuration: the @EnableBatchProcessing
annotation and two builders.
The @EnableBatchProcessing
works similarly to the other @Enable* annotations in the
Spring family. In this case, @EnableBatchProcessing
provides a base configuration for
building batch jobs. Within this base configuration, an instance of StepScope
is
created in addition to a number of beans made available to be autowired:
JobRepository
: bean name "jobRepository"JobLauncher
: bean name "jobLauncher"JobRegistry
: bean name "jobRegistry"PlatformTransactionManager
: bean name "transactionManager"JobBuilderFactory
: bean name "jobBuilders"StepBuilderFactory
: bean name "stepBuilders"
The core interface for this configuration is the BatchConfigurer
. The default
implementation provides the beans mentioned above and requires a DataSource
as a bean
within the context to be provided. This data source is used by the JobRepository.
You can customize any of these beans
by creating a custom implementation of the BatchConfigurer
interface.
Typically, extending the DefaultBatchConfigurer
(which is provided if a
BatchConfigurer
is not found) and overriding the required getter is sufficient.
However, implementing your own from scratch may be required. The following
example shows how to provide a custom transaction manager:
@Bean
public BatchConfigurer batchConfigurer(DataSource dataSource) {
return new DefaultBatchConfigurer(dataSource) {
@Override
public PlatformTransactionManager getTransactionManager() {
return new MyTransactionManager();
}
};
}
Only one configuration class needs to have the |
With the base configuration in place, a user can use the provided builder factories to
configure a job. The following example shows a two step job configured with the
JobBuilderFactory
and the StepBuilderFactory
:
@Configuration
@EnableBatchProcessing
@Import(DataSourceConfiguration.class)
public class AppConfig {
@Autowired
private JobBuilderFactory jobs;
@Autowired
private StepBuilderFactory steps;
@Bean
public Job job(@Qualifier("step1") Step step1, @Qualifier("step2") Step step2) {
return jobs.get("myJob").start(step1).next(step2).build();
}
@Bean
protected Step step1(ItemReader<Person> reader,
ItemProcessor<Person, Person> processor,
ItemWriter<Person> writer) {
return steps.get("step1")
.<Person, Person> chunk(10)
.reader(reader)
.processor(processor)
.writer(writer)
.build();
}
@Bean
protected Step step2(Tasklet tasklet) {
return steps.get("step2")
.tasklet(tasklet)
.build();
}
}
.4 Configuring a JobRepository
When using @EnableBatchProcessing
, a JobRepository
is provided out of the box for you.
This section addresses configuring your own.
As described in earlier, the JobRepository
is used for basic CRUD operations of the various persisted
domain objects within Spring Batch, such as
JobExecution
and
StepExecution
. It is required by many of the major
framework features, such as the JobLauncher
,
Job
, and Step
.
When using java configuration, a JobRepository
is provided for you. A JDBC based one is
provided out of the box if a DataSource
is provided, the Map
based one if not. However,
you can customize the configuration of the JobRepository
through an implementation of the
BatchConfigurer
interface.
...
// This would reside in your BatchConfigurer implementation
@Override
protected JobRepository createJobRepository() throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory.setDataSource(dataSource);
factory.setTransactionManager(transactionManager);
factory.setIsolationLevelForCreate("ISOLATION_SERIALIZABLE");
factory.setTablePrefix("BATCH_");
factory.setMaxVarCharLength(1000);
return factory.getObject();
}
...
None of the configuration options listed above are required except
the dataSource and transactionManager. If they are not set, the defaults shown above
will be used. They are shown above for awareness purposes. The
max varchar length defaults to 2500, which is the
length of the long VARCHAR
columns in the
sample schema scripts
.5. Configuring a JobLauncher
When using @EnableBatchProcessing
, a JobRegistry
is provided out of the box for you.
This section addresses configuring your own.
The most basic implementation of the JobLauncher
interface is the SimpleJobLauncher
.
Its only required dependency is a JobRepository
, in order to obtain an execution.
The following example shows a SimpleJobLauncher
in Java:
...
// This would reside in your BatchConfigurer implementation
@Override
protected JobLauncher createJobLauncher() throws Exception {
SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
jobLauncher.setJobRepository(jobRepository);
jobLauncher.afterPropertiesSet();
return jobLauncher;
}
...
Once a JobExecution is obtained, it is passed to the
execute method of Job
, ultimately returning the JobExecution
to the caller, as shown
in the following image:
The sequence is straightforward and works well when launched from a scheduler. However,
issues arise when trying to launch from an HTTP request. In this scenario, the launching
needs to be done asynchronously so that the SimpleJobLauncher
returns immediately to its
caller. This is because it is not good practice to keep an HTTP request open for the
amount of time needed by long running processes such as batch. The following image shows
an example sequence:
The SimpleJobLauncher
can be configured to allow for this scenario by configuring a
TaskExecutor
.
The following Java example shows a SimpleJobLauncher
configured to return immediately:
@Bean
public JobLauncher jobLauncher() {
SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
jobLauncher.setJobRepository(jobRepository());
jobLauncher.setTaskExecutor(new SimpleAsyncTaskExecutor());
jobLauncher.afterPropertiesSet();
return jobLauncher;
}
Any implementation of the spring TaskExecutor
interface can be used to control how jobs are asynchronously
executed.
.6. Running a Job
At a minimum, launching a batch job requires two things: the
Job
to be launched and a
JobLauncher
. Both can be contained within the same
context or different contexts. For example, if launching a job from the
command line, a new JVM will be instantiated for each Job, and thus every
job will have its own JobLauncher
. However, if
running from within a web container within the scope of an
HttpRequest
, there will usually be one
JobLauncher
, configured for asynchronous job
launching, that multiple requests will invoke to launch their jobs.
.6.1. Running Jobs from the Command Line
For users that want to run their jobs from an enterprise scheduler, the command line is the primary interface. This is because most schedulers (with the exception of Quartz unless using the NativeJob) work directly with operating system processes, primarily kicked off with shell scripts. There are many ways to launch a Java process besides a shell script, such as Perl, Ruby, or even 'build tools' such as ant or maven. However, because most people are familiar with shell scripts, this example will focus on them.
The CommandLineJobRunner
Because the script launching the job must kick off a Java
Virtual Machine, there needs to be a class with a main method to act
as the primary entry point. Spring Batch provides an implementation
that serves just this purpose:
CommandLineJobRunner
. It’s important to note
that this is just one way to bootstrap your application, but there are
many ways to launch a Java process, and this class should in no way be
viewed as definitive. The CommandLineJobRunner
performs four tasks:
-
Load the appropriate
ApplicationContext
- Parse command line arguments into
JobParameters
- Locate the appropriate job based on arguments
- Use the
JobLauncher
provided in the application context to launch the job.
All of these tasks are accomplished using only the arguments passed in. The following are required arguments:
jobPath |
The location of the XML file that will be used to
create an |
jobName |
The name of the job to be run. |
These arguments must be passed in with the path first and the name second. All arguments after these are considered to be job parameters, are turned into a JobParameters object, and must be in the format of 'name=value'.
The following example shows a date passed as a job parameter to a job defined in Java:
<bash$ java CommandLineJobRunner io.spring.EndOfDayJobConfiguration endOfDay schedule.date(date)=2007/05/05
By default, the In the following example,
This behaviour can be overridden by using a custom |
In most cases you would want to use a manifest to declare your main class in a jar, but,
for simplicity, the class was used directly. This example is using the same 'EndOfDay'
example from the domainLanguageOfBatch. The first
argument is 'io.spring.EndOfDayJobConfiguration', which is the fully qualified class name
to the configuration class containing the Job. The second argument, 'endOfDay' represents
the job name. The final argument, 'schedule.date(date)=2007/05/05' is converted into a
JobParameters
object. An example of the java configuration follows:
The following example shows a sample configuration for endOfDay
in Java:
@Configuration
@EnableBatchProcessing
public class EndOfDayJobConfiguration {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public Job endOfDay() {
return this.jobBuilderFactory.get("endOfDay")
.start(step1())
.build();
}
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.tasklet((contribution, chunkContext) -> null)
.build();
}
}
The preceding example is overly simplistic, since there are many more requirements to a
run a batch job in Spring Batch in general, but it serves to show the two main
requirements of the CommandLineJobRunner
: Job
and JobLauncher
.
ExitCodes
When launching a batch job from the command-line, an enterprise
scheduler is often used. Most schedulers are fairly dumb and work only
at the process level. This means that they only know about some
operating system process such as a shell script that they’re invoking.
In this scenario, the only way to communicate back to the scheduler
about the success or failure of a job is through return codes. A
return code is a number that is returned to a scheduler by the process
that indicates the result of the run. In the simplest case: 0 is
success and 1 is failure. However, there may be more complex
scenarios: If job A returns 4 kick off job B, and if it returns 5 kick
off job C. This type of behavior is configured at the scheduler level,
but it is important that a processing framework such as Spring Batch
provide a way to return a numeric representation of the 'Exit Code'
for a particular batch job. In Spring Batch this is encapsulated
within an ExitStatus
, which is covered in more
detail in Chapter 5. For the purposes of discussing exit codes, the
only important thing to know is that an
ExitStatus
has an exit code property that is
set by the framework (or the developer) and is returned as part of the
JobExecution
returned from the
JobLauncher
. The
CommandLineJobRunner
converts this string value
to a number using the ExitCodeMapper
interface:
public interface ExitCodeMapper {
public int intValue(String exitCode);
}
The essential contract of an
ExitCodeMapper
is that, given a string exit
code, a number representation will be returned. The default
implementation used by the job runner is the SimpleJvmExitCodeMapper
that returns 0 for completion, 1 for generic errors, and 2 for any job
runner errors such as not being able to find a
Job
in the provided context. If anything more
complex than the 3 values above is needed, then a custom
implementation of the ExitCodeMapper
interface
must be supplied. Because the
CommandLineJobRunner
is the class that creates
an ApplicationContext
, and thus cannot be
'wired together', any values that need to be overwritten must be
autowired. This means that if an implementation of
ExitCodeMapper
is found within the BeanFactory
,
it will be injected into the runner after the context is created. All
that needs to be done to provide your own
ExitCodeMapper
is to declare the implementation
as a root level bean and ensure that it is part of the
ApplicationContext
that is loaded by the
runner.
.6.2. Running Jobs from within a Web Container
Historically, offline processing such as batch jobs have been
launched from the command-line, as described above. However, there are
many cases where launching from an HttpRequest
is
a better option. Many such use cases include reporting, ad-hoc job
running, and web application support. Because a batch job by definition
is long running, the most important concern is ensuring to launch the
job asynchronously:
The controller in this case is a Spring MVC controller. More
information on Spring MVC can be found here: https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc.
The controller launches a Job
using a
JobLauncher
that has been configured to launch
asynchronously, which
immediately returns a JobExecution
. The
Job
will likely still be running, however, this
nonblocking behaviour allows the controller to return immediately, which
is required when handling an HttpRequest
. An
example is below:
@Controller
public class JobLauncherController {
@Autowired
JobLauncher jobLauncher;
@Autowired
Job job;
@RequestMapping("/jobLauncher.html")
public void handle() throws Exception{
jobLauncher.run(job, new JobParameters());
}
}
.7. Advanced Meta-Data Usage
So far, both the JobLauncher
and JobRepository
interfaces have been
discussed. Together, they represent simple launching of a job, and basic
CRUD operations of batch domain objects:
A JobLauncher
uses the
JobRepository
to create new
JobExecution
objects and run them.
Job
and Step
implementations
later use the same JobRepository
for basic updates
of the same executions during the running of a Job.
The basic operations suffice for simple scenarios, but in a large batch
environment with hundreds of batch jobs and complex scheduling
requirements, more advanced access of the meta data is required:
The JobExplorer
and
JobOperator
interfaces, which will be discussed
below, add additional functionality for querying and controlling the meta
data.
Configuring a Step
As discussed in the domain chapter, a Step
is a
domain object that encapsulates an independent, sequential phase of a batch job and
contains all of the information necessary to define and control the actual batch
processing. This is a necessarily vague description because the contents of any given
Step
are at the discretion of the developer writing a Job
. A Step
can be as simple
or complex as the developer desires. A simple Step
might load data from a file into the
database, requiring little or no code (depending upon the implementations used). A more
complex Step
might have complicated business rules that are applied as part of the
processing, as shown in the following image:
. Chunk-oriented Processing
Spring Batch uses a 'Chunk-oriented' processing style within its most common
implementation. Chunk oriented processing refers to reading the data one at a time and
creating 'chunks' that are written out within a transaction boundary. Once the number of
items read equals the commit interval, the entire chunk is written out by the
ItemWriter
, and then the transaction is committed. The following image shows the
process:
The following pseudo code shows the same concepts in a simplified form:
List items = new Arraylist();
for(int i = 0; i < commitInterval; i++){
Object item = itemReader.read();
if (item != null) {
items.add(item);
}
}
itemWriter.write(items);
A chunk-oriented step can also be configured with an optional ItemProcessor
to process items before passing them to the ItemWriter
. The following image
shows the process when an ItemProcessor
is registered in the step:
The following pseudo code shows how this is implemented in a simplified form:
List items = new Arraylist();
for(int i = 0; i < commitInterval; i++){
Object item = itemReader.read();
if (item != null) {
items.add(item);
}
}
List processedItems = new Arraylist();
for(Object item: items){
Object processedItem = itemProcessor.process(item);
if (processedItem != null) {
processedItems.add(processedItem);
}
}
itemWriter.write(processedItems);
For more details about item processors and their use cases, please refer to the Item processing section.
. Configuring a Step
Despite the relatively short list of required dependencies for a Step
, it is an
extremely complex class that can potentially contain many collaborators.
When using Java configuration, the Spring Batch builders can be used, as shown in the following example:
/**
* Note the JobRepository is typically autowired in and not needed to be explicitly
* configured
*/
@Bean
public Job sampleJob(JobRepository jobRepository, Step sampleStep) {
return this.jobBuilderFactory.get("sampleJob")
.repository(jobRepository)
.start(sampleStep)
.build();
}
/**
* Note the TransactionManager is typically autowired in and not needed to be explicitly
* configured
*/
@Bean
public Step sampleStep(PlatformTransactionManager transactionManager) {
return this.stepBuilderFactory.get("sampleStep")
.transactionManager(transactionManager)
.<String, String>chunk(10)
.reader(itemReader())
.writer(itemWriter())
.build();
}
The configuration above includes the only required dependencies to create a item-oriented step:
reader
: TheItemReader
that provides items for processing.writer
: TheItemWriter
that processes the items provided by theItemReader
.transactionManager
: Spring’sPlatformTransactionManager
that begins and commits transactions during processing.repository
: The The Java-specific name of theJobRepository
that periodically stores theStepExecution
andExecutionContext
during processing (just before committing).chunk
: The XML-specific name of the dependency that indicates that this is an item-based step and the number of items to be processed before the transaction is committed.
It should be noted that repository
defaults to jobRepository
and transactionManager
defaults to transactionManager
(all provided through the infrastructure from
@EnableBatchProcessing
). Also, the ItemProcessor
is optional, since the item could be
directly passed from the reader to the writer.
. The Commit Interval
As mentioned previously, a step reads in and writes out items, periodically committing
using the supplied PlatformTransactionManager
. With a commit-interval
of 1, it
commits after writing each individual item. This is less than ideal in many situations,
since beginning and committing a transaction is expensive. Ideally, it is preferable to
process as many items as possible in each transaction, which is completely dependent upon
the type of data being processed and the resources with which the step is interacting.
For this reason, the number of items that are processed within a commit can be
configured.
The following example shows a step
whose tasklet
has a commit-interval
value of 10 as it would be defined in Java:
@Bean
public Job sampleJob() {
return this.jobBuilderFactory.get("sampleJob")
.start(step1())
.build();
}
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(itemReader())
.writer(itemWriter())
.build();
}
In the preceding example, 10 items are processed within each transaction. At the
beginning of processing, a transaction is begun. Also, each time read
is called on the
ItemReader
, a counter is incremented. When it reaches 10, the list of aggregated items
is passed to the ItemWriter
, and the transaction is committed.
. Configuring a Step
for Restart
In the "Configuring and Running a Job" section , restarting a
Job
was discussed. Restart has numerous impacts on steps, and, consequently, may
require some specific configuration.
Setting a Start Limit
There are many scenarios where you may want to control the number of times a Step
may
be started. For example, a particular Step
might need to be configured so that it only
runs once because it invalidates some resource that must be fixed manually before it can
be run again. This is configurable on the step level, since different steps may have
different requirements. A Step
that may only be executed once can exist as part of the
same Job
as a Step
that can be run infinitely.
The following code fragment shows an example of a start limit configuration in Java:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(itemReader())
.writer(itemWriter())
.startLimit(1)
.build();
}
The step shown in the preceding example can be run only once. Attempting to run it again
causes a StartLimitExceededException
to be thrown. Note that the default value for the
start-limit is Integer.MAX_VALUE
.
Restarting a Completed Step
In the case of a restartable job, there may be one or more steps that should always be
run, regardless of whether or not they were successful the first time. An example might
be a validation step or a Step
that cleans up resources before processing. During
normal processing of a restarted job, any step with a status of 'COMPLETED', meaning it
has already been completed successfully, is skipped. Setting allow-start-if-complete
to
"true" overrides this so that the step always runs.
The following code fragment shows how to define a restartable job in Java:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(itemReader())
.writer(itemWriter())
.allowStartIfComplete(true)
.build();
}
Step
Restart Configuration Example
The following Java example shows how to configure a job to have steps that can be restarted:
@Bean
public Job footballJob() {
return this.jobBuilderFactory.get("footballJob")
.start(playerLoad())
.next(gameLoad())
.next(playerSummarization())
.build();
}
@Bean
public Step playerLoad() {
return this.stepBuilderFactory.get("playerLoad")
.<String, String>chunk(10)
.reader(playerFileItemReader())
.writer(playerWriter())
.build();
}
@Bean
public Step gameLoad() {
return this.stepBuilderFactory.get("gameLoad")
.allowStartIfComplete(true)
.<String, String>chunk(10)
.reader(gameFileItemReader())
.writer(gameWriter())
.build();
}
@Bean
public Step playerSummarization() {
return this.stepBuilderFactory.get("playerSummarization")
.startLimit(2)
.<String, String>chunk(10)
.reader(playerSummarizationSource())
.writer(summaryWriter())
.build();
}
. Configuring Skip Logic
There are many scenarios where errors encountered while processing should not result in
Step
failure, but should be skipped instead. This is usually a decision that must be
made by someone who understands the data itself and what meaning it has. Financial data,
for example, may not be skippable because it results in money being transferred, which
needs to be completely accurate. Loading a list of vendors, on the other hand, might
allow for skips. If a vendor is not loaded because it was formatted incorrectly or was
missing necessary information, then there probably are not issues. Usually, these bad
records are logged as well, which is covered later when discussing listeners.
The following Java example shows an example of using a skip limit:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(flatFileItemReader())
.writer(itemWriter())
.faultTolerant()
.skipLimit(10)
.skip(FlatFileParseException.class)
.build();
}
In the preceding example, a FlatFileItemReader
is used. If, at any point, a
FlatFileParseException
is thrown, the item is skipped and counted against the total
skip limit of 10. Exceptions (and their subclasses) that are declared might be thrown
during any phase of the chunk processing (read, process, write) but separate counts
are made of skips on read, process, and write inside
the step execution, but the limit applies across all skips. Once the skip limit is
reached, the next exception found causes the step to fail. In other words, the eleventh
skip triggers the exception, not the tenth.
One problem with the preceding example is that any other exception besides a
FlatFileParseException
causes the Job
to fail. In certain scenarios, this may be the
correct behavior. However, in other scenarios, it may be easier to identify which
exceptions should cause failure and skip everything else.
The following Java example shows an example excluding a particular exception:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(flatFileItemReader())
.writer(itemWriter())
.faultTolerant()
.skipLimit(10)
.skip(Exception.class)
.noSkip(FileNotFoundException.class)
.build();
}
By identifying java.lang.Exception
as a skippable exception class, the configuration
indicates that all Exceptions
are skippable. However, by 'excluding'
java.io.FileNotFoundException
, the configuration refines the list of skippable
exception classes to be all Exceptions
except FileNotFoundException
. Any excluded
exception classes is fatal if encountered (that is, they are not skipped).
For any exception encountered, the skippability is determined by the nearest superclass in the class hierarchy. Any unclassified exception is treated as 'fatal'.
The order of the skip
and noSkip
method calls does not matter.
. Configuring Retry Logic
In most cases, you want an exception to cause either a skip or a Step
failure. However,
not all exceptions are deterministic. If a FlatFileParseException
is encountered while
reading, it is always thrown for that record. Resetting the ItemReader
does not help.
However, for other exceptions, such as a DeadlockLoserDataAccessException
, which
indicates that the current process has attempted to update a record that another process
holds a lock on. Waiting and trying again might result in success.
In Java, retry should be configured as follows:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(itemReader())
.writer(itemWriter())
.faultTolerant()
.retryLimit(3)
.retry(DeadlockLoserDataAccessException.class)
.build();
}
The Step
allows a limit for the number of times an individual item can be retried and a
list of exceptions that are 'retryable'. More details on how retry works can be found in
retry.
. Controlling Rollback
By default, regardless of retry or skip, any exceptions thrown from the ItemWriter
cause the transaction controlled by the Step
to rollback. If skip is configured as
described earlier, exceptions thrown from the ItemReader
do not cause a rollback.
However, there are many scenarios in which exceptions thrown from the ItemWriter
should
not cause a rollback, because no action has taken place to invalidate the transaction.
For this reason, the Step
can be configured with a list of exceptions that should not
cause rollback.
In Java, you can control rollback as follows:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(itemReader())
.writer(itemWriter())
.faultTolerant()
.noRollback(ValidationException.class)
.build();
}
Transactional Readers
The basic contract of the ItemReader
is that it is forward only. The step buffers
reader input, so that in the case of a rollback, the items do not need to be re-read
from the reader. However, there are certain scenarios in which the reader is built on
top of a transactional resource, such as a JMS queue. In this case, since the queue is
tied to the transaction that is rolled back, the messages that have been pulled from the
queue are put back on. For this reason, the step can be configured to not buffer the
items.
The following example shows how to create reader that does not buffer items in Java:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(itemReader())
.writer(itemWriter())
.readerIsTransactionalQueue()
.build();
}
. Transaction Attributes
Transaction attributes can be used to control the isolation
, propagation
, and
timeout
settings. More information on setting transaction attributes can be found in
the
Spring
core documentation.
The following example sets the isolation
, propagation
, and timeout
transaction
attributes in Java:
@Bean
public Step step1() {
DefaultTransactionAttribute attribute = new DefaultTransactionAttribute();
attribute.setPropagationBehavior(Propagation.REQUIRED.value());
attribute.setIsolationLevel(Isolation.DEFAULT.value());
attribute.setTimeout(30);
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(itemReader())
.writer(itemWriter())
.transactionAttribute(attribute)
.build();
}
. Registering ItemStream
with a Step
The step has to take care of ItemStream
callbacks at the necessary points in its
lifecycle (For more information on the ItemStream
interface, see
ItemStream). This is vital if a step fails and might
need to be restarted, because the ItemStream
interface is where the step gets the
information it needs about persistent state between executions.
If the ItemReader
, ItemProcessor
, or ItemWriter
itself implements the ItemStream
interface, then these are registered automatically. Any other streams need to be
registered separately. This is often the case where indirect dependencies, such as
delegates, are injected into the reader and writer. A stream can be registered on the
step
through the 'stream' element.
The following example shows how to register a stream
on a step
in Java:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(itemReader())
.writer(compositeItemWriter())
.stream(fileItemWriter1())
.stream(fileItemWriter2())
.build();
}
/**
* In Spring Batch 4, the CompositeItemWriter implements ItemStream so this isn't
* necessary, but used for an example.
*/
@Bean
public CompositeItemWriter compositeItemWriter() {
List<ItemWriter> writers = new ArrayList<>(2);
writers.add(fileItemWriter1());
writers.add(fileItemWriter2());
CompositeItemWriter itemWriter = new CompositeItemWriter();
itemWriter.setDelegates(writers);
return itemWriter;
}
In the example above, the CompositeItemWriter
is not an ItemStream
, but both of its
delegates are. Therefore, both delegate writers must be explicitly registered as streams
in order for the framework to handle them correctly. The ItemReader
does not need to be
explicitly registered as a stream because it is a direct property of the Step
. The step
is now restartable, and the state of the reader and writer is correctly persisted in the
event of a failure.
. Intercepting Step
Execution
Just as with the Job
, there are many events during the execution of a Step
where a
user may need to perform some functionality. For example, in order to write out to a flat
file that requires a footer, the ItemWriter
needs to be notified when the Step
has
been completed, so that the footer can be written. This can be accomplished with one of many
Step
scoped listeners.
Any class that implements one of the extensions of StepListener
(but not that interface
itself since it is empty) can be applied to a step through the listeners
element.
The listeners
element is valid inside a step, tasklet, or chunk declaration. It is
recommended that you declare the listeners at the level at which its function applies,
or, if it is multi-featured (such as StepExecutionListener
and ItemReadListener
),
then declare it at the most granular level where it applies.
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(reader())
.writer(writer())
.listener(chunkListener())
.build();
}
An ItemReader
, ItemWriter
or ItemProcessor
that itself implements one of the
StepListener
interfaces is registered automatically with the Step
if using the
namespace <step>
element or one of the the *StepFactoryBean
factories. This only
applies to components directly injected into the Step
. If the listener is nested inside
another component, it needs to be explicitly registered (as described previously under
Registering ItemStream
with a Step
).
In addition to the StepListener
interfaces, annotations are provided to address the
same concerns. Plain old Java objects can have methods with these annotations that are
then converted into the corresponding StepListener
type. It is also common to annotate
custom implementations of chunk components such as ItemReader
or ItemWriter
or
Tasklet
. The annotations are analyzed by the XML parser for the <listener/>
elements
as well as registered with the listener
methods in the builders, so all you need to do
is use the XML namespace or builders to register the listeners with a step.
StepExecutionListener
StepExecutionListener
represents the most generic listener for Step
execution. It
allows for notification before a Step
is started and after it ends, whether it ended
normally or failed, as shown in the following example:
public interface StepExecutionListener extends StepListener {
void beforeStep(StepExecution stepExecution);
ExitStatus afterStep(StepExecution stepExecution);
}
ExitStatus
is the return type of afterStep
in order to allow listeners the chance to
modify the exit code that is returned upon completion of a Step
.
The annotations corresponding to this interface are:
-
@BeforeStep
-
@AfterStep
ChunkListener
A chunk is defined as the items processed within the scope of a transaction. Committing a
transaction, at each commit interval, commits a 'chunk'. A ChunkListener
can be used to
perform logic before a chunk begins processing or after a chunk has completed
successfully, as shown in the following interface definition:
public interface ChunkListener extends StepListener {
void beforeChunk(ChunkContext context);
void afterChunk(ChunkContext context);
void afterChunkError(ChunkContext context);
}
The beforeChunk method is called after the transaction is started but before read is
called on the ItemReader
. Conversely, afterChunk
is called after the chunk has been
committed (and not at all if there is a rollback).
The annotations corresponding to this interface are:
- @BeforeChunk
- @AfterChunk
- @AfterChunkError
A ChunkListener
can be applied when there is no chunk declaration. The TaskletStep
is
responsible for calling the ChunkListener
, so it applies to a non-item-oriented tasklet
as well (it is called before and after the tasklet).
ItemReadListener
When discussing skip logic previously, it was mentioned that it may be beneficial to log
the skipped records, so that they can be dealt with later. In the case of read errors,
this can be done with an ItemReaderListener
, as shown in the following interface
definition:
public interface ItemReadListener<T> extends StepListener {
void beforeRead();
void afterRead(T item);
void onReadError(Exception ex);
}
The beforeRead
method is called before each call to read on the ItemReader
. The
afterRead
method is called after each successful call to read and is passed the item
that was read. If there was an error while reading, the onReadError
method is called.
The exception encountered is provided so that it can be logged.
The annotations corresponding to this interface are:
- @BeforeRead
- @AfterRead
- @OnReadError
ItemProcessListener
Just as with the ItemReadListener
, the processing of an item can be 'listened' to, as
shown in the following interface definition:
public interface ItemProcessListener<T, S> extends StepListener {
void beforeProcess(T item);
void afterProcess(T item, S result);
void onProcessError(T item, Exception e);
}
The beforeProcess
method is called before process
on the ItemProcessor
and is
handed the item that is to be processed. The afterProcess
method is called after the
item has been successfully processed. If there was an error while processing, the
onProcessError
method is called. The exception encountered and the item that was
attempted to be processed are provided, so that they can be logged.
The annotations corresponding to this interface are:
- @BeforeProcess
- @AfterProcess
- @OnProcessError
ItemWriteListener
The writing of an item can be 'listened' to with the ItemWriteListener
, as shown in the
following interface definition:
public interface ItemWriteListener<S> extends StepListener {
void beforeWrite(List<? extends S> items);
void afterWrite(List<? extends S> items);
void onWriteError(Exception exception, List<? extends S> items);
}
The beforeWrite
method is called before write
on the ItemWriter
and is handed the
list of items that is written. The afterWrite
method is called after the item has been
successfully written. If there was an error while writing, the onWriteError
method is
called. The exception encountered and the item that was attempted to be written are
provided, so that they can be logged.
The annotations corresponding to this interface are:
- @BeforeWrite
- @AfterWrite
- @OnWriteError
SkipListener
ItemReadListener
, ItemProcessListener
, and ItemWriteListener
all provide mechanisms
for being notified of errors, but none informs you that a record has actually been
skipped. onWriteError
, for example, is called even if an item is retried and
successful. For this reason, there is a separate interface for tracking skipped items, as
shown in the following interface definition:
public interface SkipListener<T,S> extends StepListener {
void onSkipInRead(Throwable t);
void onSkipInProcess(T item, Throwable t);
void onSkipInWrite(S item, Throwable t);
}
onSkipInRead
is called whenever an item is skipped while reading. It should be noted
that rollbacks may cause the same item to be registered as skipped more than once.
onSkipInWrite
is called when an item is skipped while writing. Because the item has
been read successfully (and not skipped), it is also provided the item itself as an
argument.
The annotations corresponding to this interface are:
- @OnSkipInRead
- @OnSkipInWrite
- @OnSkipInProcess
SkipListeners and Transactions
One of the most common use cases for a SkipListener
is to log out a skipped item, so
that another batch process or even human process can be used to evaluate and fix the
issue leading to the skip. Because there are many cases in which the original transaction
may be rolled back, Spring Batch makes two guarantees:
-
The appropriate skip method (depending on when the error happened) is called only once per item.
-
The
SkipListener
is always called just before the transaction is committed. This is to ensure that any transactional resources call by the listener are not rolled back by a failure within theItemWriter
.
TaskletStep
Chunk-oriented processing is not the only way to process in a
Step
. What if a Step
must consist of a simple stored procedure call? You could
implement the call as an ItemReader
and return null after the procedure finishes.
However, doing so is a bit unnatural, since there would need to be a no-op ItemWriter
.
Spring Batch provides the TaskletStep
for this scenario.
Tasklet
is a simple interface that has one method, execute
, which is called
repeatedly by the TaskletStep
until it either returns RepeatStatus.FINISHED
or throws
an exception to signal a failure. Each call to a Tasklet
is wrapped in a transaction.
Tasklet
implementors might call a stored procedure, a script, or a simple SQL update
statement.
To create a TaskletStep
in Java, the bean passed to the tasklet
method of the builder
should implement the Tasklet
interface. No call to chunk
should be called when
building a TaskletStep
. The following example shows a simple tasklet:
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.tasklet(myTasklet())
.build();
}
|
Controlling Step Flow
With the ability to group steps together within an owning job comes the need to be able
to control how the job "flows" from one step to another. The failure of a Step
does not
necessarily mean that the Job
should fail. Furthermore, there may be more than one type
of 'success' that determines which Step
should be executed next. Depending upon how a
group of Steps
is configured, certain steps may not even be processed at all.
. Sequential Flow
The simplest flow scenario is a job where all of the steps execute sequentially, as shown in the following image:
This can be achieved by using the 'next' in a step
.
The following example shows how to use the next()
method in Java:
@Bean
public Job job() {
return this.jobBuilderFactory.get("job")
.start(stepA())
.next(stepB())
.next(stepC())
.build();
}
In the scenario above, 'step A' runs first because it is the first Step
listed. If
'step A' completes normally, then 'step B' runs, and so on. However, if 'step A' fails,
then the entire Job
fails and 'step B' does not execute.
ItemReaders and ItemWriters
All batch processing can be described in its most simple form as reading in large amounts
of data, performing some type of calculation or transformation, and writing the result
out. Spring Batch provides three key interfaces to help perform bulk reading and writing:
ItemReader
, ItemProcessor
, and ItemWriter
.
.1. ItemReader
Although a simple concept, an ItemReader
is the means for providing data from many
different types of input. The most general examples include:
- Flat File: Flat-file item readers read lines of data from a flat file that typically describes records with fields of data defined by fixed positions in the file or delimited by some special character (such as a comma).
- XML: XML
ItemReaders
process XML independently of technologies used for parsing, mapping and validating objects. Input data allows for the validation of an XML file against an XSD schema. - Database: A database resource is accessed to return resultsets which can be mapped to
objects for processing. The default SQL
ItemReader
implementations invoke aRowMapper
to return objects, keep track of the current row if restart is required, store basic statistics, and provide some transaction enhancements that are explained later.
There are many more possibilities, but we focus on the basic ones for this chapter. A
complete list of all available ItemReader
implementations can be found in
Appendix A.
ItemReader
is a basic interface for generic
input operations, as shown in the following interface definition:
public interface ItemReader<T> {
T read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException;
}
The read
method defines the most essential contract of the ItemReader
. Calling it
returns one item or null
if no more items are left. An item might represent a line in a
file, a row in a database, or an element in an XML file. It is generally expected that
these are mapped to a usable domain object (such as Trade
, Foo
, or others), but there
is no requirement in the contract to do so.
It is expected that implementations of the ItemReader
interface are forward only.
However, if the underlying resource is transactional (such as a JMS queue) then calling
read
may return the same logical item on subsequent calls in a rollback scenario. It is
also worth noting that a lack of items to process by an ItemReader
does not cause an
exception to be thrown. For example, a database ItemReader
that is configured with a
query that returns 0 results returns null
on the first invocation of read
.
.2. ItemWriter
ItemWriter
is similar in functionality to an ItemReader
but with inverse operations.
Resources still need to be located, opened, and closed but they differ in that an
ItemWriter
writes out, rather than reading in. In the case of databases or queues,
these operations may be inserts, updates, or sends. The format of the serialization of
the output is specific to each batch job.
As with ItemReader
,
ItemWriter
is a fairly generic interface, as shown in the following interface definition:
public interface ItemWriter<T> {
void write(List<? extends T> items) throws Exception;
}
As with read
on ItemReader
, write
provides the basic contract of ItemWriter
. It
attempts to write out the list of items passed in as long as it is open. Because it is
generally expected that items are 'batched' together into a chunk and then output, the
interface accepts a list of items, rather than an item by itself. After writing out the
list, any flushing that may be necessary can be performed before returning from the write
method. For example, if writing to a Hibernate DAO, multiple calls to write can be made,
one for each item. The writer can then call flush
on the hibernate session before
returning.
.3. ItemStream
Both ItemReaders
and ItemWriters
serve their individual purposes well, but there is a
common concern among both of them that necessitates another interface. In general, as
part of the scope of a batch job, readers and writers need to be opened, closed, and
require a mechanism for persisting state. The ItemStream
interface serves that purpose,
as shown in the following example:
public interface ItemStream {
void open(ExecutionContext executionContext) throws ItemStreamException;
void update(ExecutionContext executionContext) throws ItemStreamException;
void close() throws ItemStreamException;
}
Before describing each method, we should mention the ExecutionContext
. Clients of an
ItemReader
that also implement ItemStream
should call open
before any calls to
read
, in order to open any resources such as files or to obtain connections. A similar
restriction applies to an ItemWriter
that implements ItemStream
. As mentioned in
Chapter 2, if expected data is found in the ExecutionContext
, it may be used to start
the ItemReader
or ItemWriter
at a location other than its initial state. Conversely,
close
is called to ensure that any resources allocated during open are released safely.
update
is called primarily to ensure that any state currently being held is loaded into
the provided ExecutionContext
. This method is called before committing, to ensure that
the current state is persisted in the database before commit.
In the special case where the client of an ItemStream
is a Step
(from the Spring
Batch Core), an ExecutionContext
is created for each StepExecution to allow users to
store the state of a particular execution, with the expectation that it is returned if
the same JobInstance
is started again. For those familiar with Quartz, the semantics
are very similar to a Quartz JobDataMap
.
.4. The Delegate Pattern and Registering with the Step
Note that the CompositeItemWriter
is an example of the delegation pattern, which is
common in Spring Batch. The delegates themselves might implement callback interfaces,
such as StepListener
. If they do and if they are being used in conjunction with Spring
Batch Core as part of a Step
in a Job
, then they almost certainly need to be
registered manually with the Step
. A reader, writer, or processor that is directly
wired into the Step
gets registered automatically if it implements ItemStream
or a
StepListener
interface. However, because the delegates are not known to the Step
,
they need to be injected as listeners or streams (or both if appropriate).
@Bean
public Job ioSampleJob() {
return this.jobBuilderFactory.get("ioSampleJob")
.start(step1())
.build();
}
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(2)
.reader(fooReader())
.processor(fooProcessor())
.writer(compositeItemWriter())
.stream(barWriter())
.build();
}
@Bean
public CustomCompositeItemWriter compositeItemWriter() {
CustomCompositeItemWriter writer = new CustomCompositeItemWriter();
writer.setDelegate(barWriter());
return writer;
}
@Bean
public BarWriter barWriter() {
return new BarWriter();
}
.5. Flat Files
One of the most common mechanisms for interchanging bulk data has always been the flat file. Unlike XML, which has an agreed upon standard for defining how it is structured (XSD), anyone reading a flat file must understand ahead of time exactly how the file is structured. In general, all flat files fall into two types: delimited and fixed length. Delimited files are those in which fields are separated by a delimiter, such as a comma. Fixed Length files have fields that are a set length.
.5.1. The FieldSet
When working with flat files in Spring Batch, regardless of whether it is for input or
output, one of the most important classes is the FieldSet
. Many architectures and
libraries contain abstractions for helping you read in from a file, but they usually
return a String
or an array of String
objects. This really only gets you halfway
there. A FieldSet
is Spring Batch’s abstraction for enabling the binding of fields from
a file resource. It allows developers to work with file input in much the same way as
they would work with database input. A FieldSet
is conceptually similar to a JDBC
ResultSet
. A FieldSet
requires only one argument: a String
array of tokens.
Optionally, you can also configure the names of the fields so that the fields may be
accessed either by index or name as patterned after ResultSet
, as shown in the following
example:
String[] tokens = new String[]{"foo", "1", "true"};
FieldSet fs = new DefaultFieldSet(tokens);
String name = fs.readString(0);
int value = fs.readInt(1);
boolean booleanValue = fs.readBoolean(2);
There are many more options on the FieldSet
interface, such as Date
, long,
BigDecimal
, and so on. The biggest advantage of the FieldSet
is that it provides
consistent parsing of flat file input. Rather than each batch job parsing differently in
potentially unexpected ways, it can be consistent, both when handling errors caused by a
format exception, or when doing simple data conversions.
.5.2. FlatFileItemReader
A flat file is any type of file that contains at most two-dimensional (tabular) data.
Reading flat files in the Spring Batch framework is facilitated by the class called
FlatFileItemReader
, which provides basic functionality for reading and parsing flat
files. The two most important required dependencies of FlatFileItemReader
are
Resource
and LineMapper
. The LineMapper
interface is explored more in the next
sections. The resource property represents a Spring Core Resource
. Documentation
explaining how to create beans of this type can be found in
Spring
Framework, Chapter 5. Resources. Therefore, this guide does not go into the details of
creating Resource
objects beyond showing the following simple example:
Resource resource = new FileSystemResource("resources/trades.csv");
In complex batch environments, the directory structures are often managed by the Enterprise Application Integration (EAI) infrastructure, where drop zones for external interfaces are established for moving files from FTP locations to batch processing locations and vice versa. File moving utilities are beyond the scope of the Spring Batch architecture, but it is not unusual for batch job streams to include file moving utilities as steps in the job stream. The batch architecture only needs to know how to locate the files to be processed. Spring Batch begins the process of feeding the data into the pipe from this starting point. However, Spring Integration provides many of these types of services.
The other properties in FlatFileItemReader
let you further specify how your data is
interpreted, as described in the following table:
Property | Type | Description |
---|---|---|
comments |
String[] |
Specifies line prefixes that indicate comment rows. |
encoding |
String |
Specifies what text encoding to use. The default is the value of |
lineMapper |
|
Converts a |
linesToSkip |
int |
Number of lines to ignore at the top of the file. |
recordSeparatorPolicy |
RecordSeparatorPolicy |
Used to determine where the line endings are and do things like continue over a line ending if inside a quoted string. |
resource |
|
The resource from which to read. |
skippedLinesCallback |
LineCallbackHandler |
Interface that passes the raw line content of
the lines in the file to be skipped. If |
strict |
boolean |
In strict mode, the reader throws an exception on |
LineMapper
As with RowMapper
, which takes a low-level construct such as ResultSet
and returns
an Object
, flat file processing requires the same construct to convert a String
line
into an Object
, as shown in the following interface definition:
public interface LineMapper<T> {
T mapLine(String line, int lineNumber) throws Exception;
}
The basic contract is that, given the current line and the line number with which it is
associated, the mapper should return a resulting domain object. This is similar to
RowMapper
, in that each line is associated with its line number, just as each row in a
ResultSet
is tied to its row number. This allows the line number to be tied to the
resulting domain object for identity comparison or for more informative logging. However,
unlike RowMapper
, the LineMapper
is given a raw line which, as discussed above, only
gets you halfway there. The line must be tokenized into a FieldSet
, which can then be
mapped to an object, as described later in this document.
LineTokenizer
An abstraction for turning a line of input into a FieldSet
is necessary because there
can be many formats of flat file data that need to be converted to a FieldSet
. In
Spring Batch, this interface is the LineTokenizer
:
public interface LineTokenizer {
FieldSet tokenize(String line);
}
The contract of a LineTokenizer
is such that, given a line of input (in theory the
String
could encompass more than one line), a FieldSet
representing the line is
returned. This FieldSet
can then be passed to a FieldSetMapper
. Spring Batch contains
the following LineTokenizer
implementations:
DelimitedLineTokenizer
: Used for files where fields in a record are separated by a delimiter. The most common delimiter is a comma, but pipes or semicolons are often used as well.FixedLengthTokenizer
: Used for files where fields in a record are each a "fixed width". The width of each field must be defined for each record type.PatternMatchingCompositeLineTokenizer
: Determines whichLineTokenizer
among a list of tokenizers should be used on a particular line by checking against a pattern.
FieldSetMapper
The FieldSetMapper
interface defines a single method, mapFieldSet
, which takes a
FieldSet
object and maps its contents to an object. This object may be a custom DTO, a
domain object, or an array, depending on the needs of the job. The FieldSetMapper
is
used in conjunction with the LineTokenizer
to translate a line of data from a resource
into an object of the desired type, as shown in the following interface definition:
public interface FieldSetMapper<T> {
T mapFieldSet(FieldSet fieldSet) throws BindException;
}
The pattern used is the same as the RowMapper
used by JdbcTemplate
.
DefaultLineMapper
Now that the basic interfaces for reading in flat files have been defined, it becomes clear that three basic steps are required:
-
Read one line from the file.
-
Pass the
String
line into theLineTokenizer#tokenize()
method to retrieve aFieldSet
. -
Pass the
FieldSet
returned from tokenizing to aFieldSetMapper
, returning the result from theItemReader#read()
method.
The two interfaces described above represent two separate tasks: converting a line into a
FieldSet
and mapping a FieldSet
to a domain object. Because the input of a
LineTokenizer
matches the input of the LineMapper
(a line), and the output of a
FieldSetMapper
matches the output of the LineMapper
, a default implementation that
uses both a LineTokenizer
and a FieldSetMapper
is provided. The DefaultLineMapper
,
shown in the following class definition, represents the behavior most users need:
public class DefaultLineMapper<T> implements LineMapper<>, InitializingBean {
private LineTokenizer tokenizer;
private FieldSetMapper<T> fieldSetMapper;
public T mapLine(String line, int lineNumber) throws Exception {
return fieldSetMapper.mapFieldSet(tokenizer.tokenize(line));
}
public void setLineTokenizer(LineTokenizer tokenizer) {
this.tokenizer = tokenizer;
}
public void setFieldSetMapper(FieldSetMapper<T> fieldSetMapper) {
this.fieldSetMapper = fieldSetMapper;
}
}
The above functionality is provided in a default implementation, rather than being built into the reader itself (as was done in previous versions of the framework) to allow users greater flexibility in controlling the parsing process, especially if access to the raw line is needed.
Simple Delimited File Reading Example
The following example illustrates how to read a flat file with an actual domain scenario. This particular batch job reads in football players from the following file:
ID,lastName,firstName,position,birthYear,debutYear "AbduKa00,Abdul-Jabbar,Karim,rb,1974,1996", "AbduRa00,Abdullah,Rabih,rb,1975,1999", "AberWa00,Abercrombie,Walter,rb,1959,1982", "AbraDa00,Abramowicz,Danny,wr,1945,1967", "AdamBo00,Adams,Bob,te,1946,1969", "AdamCh00,Adams,Charlie,wr,1979,2003"
The contents of this file are mapped to the following
Player
domain object:
public class Player implements Serializable {
private String ID;
private String lastName;
private String firstName;
private String position;
private int birthYear;
private int debutYear;
public String toString() {
return "PLAYER:ID=" + ID + ",Last Name=" + lastName +
",First Name=" + firstName + ",Position=" + position +
",Birth Year=" + birthYear + ",DebutYear=" +
debutYear;
}
// setters and getters...
}
To map a FieldSet
into a Player
object, a FieldSetMapper
that returns players needs
to be defined, as shown in the following example:
protected static class PlayerFieldSetMapper implements FieldSetMapper<Player> {
public Player mapFieldSet(FieldSet fieldSet) {
Player player = new Player();
player.setID(fieldSet.readString(0));
player.setLastName(fieldSet.readString(1));
player.setFirstName(fieldSet.readString(2));
player.setPosition(fieldSet.readString(3));
player.setBirthYear(fieldSet.readInt(4));
player.setDebutYear(fieldSet.readInt(5));
return player;
}
}
The file can then be read by correctly constructing a FlatFileItemReader
and calling
read
, as shown in the following example:
FlatFileItemReader<Player> itemReader = new FlatFileItemReader<>();
itemReader.setResource(new FileSystemResource("resources/players.csv"));
DefaultLineMapper<Player> lineMapper = new DefaultLineMapper<>();
//DelimitedLineTokenizer defaults to comma as its delimiter
lineMapper.setLineTokenizer(new DelimitedLineTokenizer());
lineMapper.setFieldSetMapper(new PlayerFieldSetMapper());
itemReader.setLineMapper(lineMapper);
itemReader.open(new ExecutionContext());
Player player = itemReader.read();
Each call to read
returns a new
Player
object from each line in the file. When the end of the file is
reached, null
is returned.
Mapping Fields by Name
There is one additional piece of functionality that is allowed by both
DelimitedLineTokenizer
and FixedLengthTokenizer
and that is similar in function to a
JDBC ResultSet
. The names of the fields can be injected into either of these
LineTokenizer
implementations to increase the readability of the mapping function.
First, the column names of all fields in the flat file are injected into the tokenizer,
as shown in the following example:
tokenizer.setNames(new String[] {"ID", "lastName", "firstName", "position", "birthYear", "debutYear"});
A FieldSetMapper
can use this information as follows:
public class PlayerMapper implements FieldSetMapper<Player> {
public Player mapFieldSet(FieldSet fs) {
if (fs == null) {
return null;
}
Player player = new Player();
player.setID(fs.readString("ID"));
player.setLastName(fs.readString("lastName"));
player.setFirstName(fs.readString("firstName"));
player.setPosition(fs.readString("position"));
player.setDebutYear(fs.readInt("debutYear"));
player.setBirthYear(fs.readInt("birthYear"));
return player;
}
}
Automapping FieldSets to Domain Objects
For many, having to write a specific FieldSetMapper
is equally as cumbersome as writing
a specific RowMapper
for a JdbcTemplate
. Spring Batch makes this easier by providing
a FieldSetMapper
that automatically maps fields by matching a field name with a setter
on the object using the JavaBean specification.
Again using the football example, the BeanWrapperFieldSetMapper
configuration looks like
the following snippet in Java:
@Bean
public FieldSetMapper fieldSetMapper() {
BeanWrapperFieldSetMapper fieldSetMapper = new BeanWrapperFieldSetMapper();
fieldSetMapper.setPrototypeBeanName("player");
return fieldSetMapper;
}
@Bean
@Scope("prototype")
public Player player() {
return new Player();
}
For each entry in the FieldSet
, the mapper looks for a corresponding setter on a new
instance of the Player
object (for this reason, prototype scope is required) in the
same way the Spring container looks for setters matching a property name. Each available
field in the FieldSet
is mapped, and the resultant Player
object is returned, with no
code required.
Fixed Length File Formats
So far, only delimited files have been discussed in much detail. However, they represent only half of the file reading picture. Many organizations that use flat files use fixed length formats. An example fixed length file follows:
UK21341EAH4121131.11customer1 UK21341EAH4221232.11customer2 UK21341EAH4321333.11customer3 UK21341EAH4421434.11customer4 UK21341EAH4521535.11customer5
While this looks like one large field, it actually represent 4 distinct fields:
-
ISIN: Unique identifier for the item being ordered - 12 characters long.
-
Quantity: Number of the item being ordered - 3 characters long.
-
Price: Price of the item - 5 characters long.
-
Customer: ID of the customer ordering the item - 9 characters long.
When configuring the FixedLengthLineTokenizer
, each of these lengths must be provided
in the form of ranges.
Supporting the preceding syntax for ranges requires that a specialized property editor,
|
The following example shows how to define ranges for the FixedLengthLineTokenizer
in
Java:
@Bean
public FixedLengthTokenizer fixedLengthTokenizer() {
FixedLengthTokenizer tokenizer = new FixedLengthTokenizer();
tokenizer.setNames("ISIN", "Quantity", "Price", "Customer");
tokenizer.setColumns(new Range(1, 12),
new Range(13, 15),
new Range(16, 20),
new Range(21, 29));
return tokenizer;
}
Because the FixedLengthLineTokenizer
uses the same LineTokenizer
interface as
discussed above, it returns the same FieldSet
as if a delimiter had been used. This
lets the same approaches be used in handling its output, such as using the
BeanWrapperFieldSetMapper
.
Multiple Record Types within a Single File
All of the file reading examples up to this point have all made a key assumption for simplicity’s sake: all of the records in a file have the same format. However, this may not always be the case. It is very common that a file might have records with different formats that need to be tokenized differently and mapped to different objects. The following excerpt from a file illustrates this:
USER;Smith;Peter;;T;20014539;F LINEA;1044391041ABC037.49G201XX1383.12H LINEB;2134776319DEF422.99M005LI
In this file we have three types of records, "USER", "LINEA", and "LINEB". A "USER" line
corresponds to a User
object. "LINEA" and "LINEB" both correspond to Line
objects,
though a "LINEA" has more information than a "LINEB".
The ItemReader
reads each line individually, but we must specify different
LineTokenizer
and FieldSetMapper
objects so that the ItemWriter
receives the
correct items. The PatternMatchingCompositeLineMapper
makes this easy by allowing maps
of patterns to LineTokenizers
and patterns to FieldSetMappers
to be configured.
@Bean
public PatternMatchingCompositeLineMapper orderFileLineMapper() {
PatternMatchingCompositeLineMapper lineMapper =
new PatternMatchingCompositeLineMapper();
Map<String, LineTokenizer> tokenizers = new HashMap<>(3);
tokenizers.put("USER*", userTokenizer());
tokenizers.put("LINEA*", lineATokenizer());
tokenizers.put("LINEB*", lineBTokenizer());
lineMapper.setTokenizers(tokenizers);
Map<String, FieldSetMapper> mappers = new HashMap<>(2);
mappers.put("USER*", userFieldSetMapper());
mappers.put("LINE*", lineFieldSetMapper());
lineMapper.setFieldSetMappers(mappers);
return lineMapper;
}
In this example, "LINEA" and "LINEB" have separate LineTokenizer
instances, but they both use
the same FieldSetMapper
.
The PatternMatchingCompositeLineMapper
uses the PatternMatcher#match
method
in order to select the correct delegate for each line. The PatternMatcher
allows for
two wildcard characters with special meaning: the question mark ("?") matches exactly one
character, while the asterisk ("*") matches zero or more characters. Note that, in the
preceding configuration, all patterns end with an asterisk, making them effectively
prefixes to lines. The PatternMatcher
always matches the most specific pattern
possible, regardless of the order in the configuration. So if "LINE*" and "LINEA*" were
both listed as patterns, "LINEA" would match pattern "LINEA*", while "LINEB" would match
pattern "LINE*". Additionally, a single asterisk ("*") can serve as a default by matching
any line not matched by any other pattern.
The following example shows how to match a line not matched by any other pattern in Java:
...
tokenizers.put("*", defaultLineTokenizer());
...
There is also a PatternMatchingCompositeLineTokenizer
that can be used for tokenization
alone.
It is also common for a flat file to contain records that each span multiple lines. To
handle this situation, a more complex strategy is required. A demonstration of this
common pattern can be found in the multiLineRecords
sample.
Exception Handling in Flat Files
There are many scenarios when tokenizing a line may cause exceptions to be thrown. Many
flat files are imperfect and contain incorrectly formatted records. Many users choose to
skip these erroneous lines while logging the issue, the original line, and the line
number. These logs can later be inspected manually or by another batch job. For this
reason, Spring Batch provides a hierarchy of exceptions for handling parse exceptions:
FlatFileParseException
and FlatFileFormatException
. FlatFileParseException
is
thrown by the FlatFileItemReader
when any errors are encountered while trying to read a
file. FlatFileFormatException
is thrown by implementations of the LineTokenizer
interface and indicates a more specific error encountered while tokenizing.
IncorrectTokenCountException
Both DelimitedLineTokenizer
and FixedLengthLineTokenizer
have the ability to specify
column names that can be used for creating a FieldSet
. However, if the number of column
names does not match the number of columns found while tokenizing a line, the FieldSet
cannot be created, and an IncorrectTokenCountException
is thrown, which contains the
number of tokens encountered, and the number expected, as shown in the following example:
tokenizer.setNames(new String[] {"A", "B", "C", "D"});
try {
tokenizer.tokenize("a,b,c");
}
catch (IncorrectTokenCountException e) {
assertEquals(4, e.getExpectedCount());
assertEquals(3, e.getActualCount());
}
Because the tokenizer was configured with 4 column names but only 3 tokens were found in
the file, an IncorrectTokenCountException
was thrown.
IncorrectLineLengthException
Files formatted in a fixed-length format have additional requirements when parsing because, unlike a delimited format, each column must strictly adhere to its predefined width. If the total line length does not equal the widest value of this column, an exception is thrown, as shown in the following example:
tokenizer.setColumns(new Range[] { new Range(1, 5),
new Range(6, 10),
new Range(11, 15) });
try {
tokenizer.tokenize("12345");
fail("Expected IncorrectLineLengthException");
}
catch (IncorrectLineLengthException ex) {
assertEquals(15, ex.getExpectedLength());
assertEquals(5, ex.getActualLength());
}
The configured ranges for the tokenizer above are: 1-5, 6-10, and 11-15. Consequently,
the total length of the line is 15. However, in the preceding example, a line of length 5
was passed in, causing an IncorrectLineLengthException
to be thrown. Throwing an
exception here rather than only mapping the first column allows the processing of the
line to fail earlier and with more information than it would contain if it failed while
trying to read in column 2 in a FieldSetMapper
. However, there are scenarios where the
length of the line is not always constant. For this reason, validation of line length can
be turned off via the 'strict' property, as shown in the following example:
tokenizer.setColumns(new Range[] { new Range(1, 5), new Range(6, 10) });
tokenizer.setStrict(false);
FieldSet tokens = tokenizer.tokenize("12345");
assertEquals("12345", tokens.readString(0));
assertEquals("", tokens.readString(1));
The preceding example is almost identical to the one before it, except that
tokenizer.setStrict(false)
was called. This setting tells the tokenizer to not enforce
line lengths when tokenizing the line. A FieldSet
is now correctly created and
returned. However, it contains only empty tokens for the remaining values.
.5.3. FlatFileItemWriter
Writing out to flat files has the same problems and issues that reading in from a file must overcome. A step must be able to write either delimited or fixed length formats in a transactional manner.
LineAggregator
Just as the LineTokenizer
interface is necessary to take an item and turn it into a
String
, file writing must have a way to aggregate multiple fields into a single string
for writing to a file. In Spring Batch, this is the LineAggregator
, shown in the
following interface definition:
public interface LineAggregator<T> {
public String aggregate(T item);
}
The LineAggregator
is the logical opposite of LineTokenizer
. LineTokenizer
takes a
String
and returns a FieldSet
, whereas LineAggregator
takes an item
and returns a
String
.
PassThroughLineAggregator
The most basic implementation of the LineAggregator
interface is the
PassThroughLineAggregator
, which assumes that the object is already a string or that
its string representation is acceptable for writing, as shown in the following code:
public class PassThroughLineAggregator<T> implements LineAggregator<T> {
public String aggregate(T item) {
return item.toString();
}
}
The preceding implementation is useful if direct control of creating the string is
required but the advantages of a FlatFileItemWriter
, such as transaction and restart
support, are necessary.
Simplified File Writing Example
Now that the LineAggregator
interface and its most basic implementation,
PassThroughLineAggregator
, have been defined, the basic flow of writing can be
explained:
-
The object to be written is passed to the
LineAggregator
in order to obtain aString
. -
The returned
String
is written to the configured file.
The following excerpt from the FlatFileItemWriter
expresses this in code:
public void write(T item) throws Exception {
write(lineAggregator.aggregate(item) + LINE_SEPARATOR);
}
In Java, a simple example of configuration might look like the following:
@Bean
public FlatFileItemWriter itemWriter() {
return new FlatFileItemWriterBuilder<Foo>()
.name("itemWriter")
.resource(new FileSystemResource("target/test-outputs/output.txt"))
.lineAggregator(new PassThroughLineAggregator<>())
.build();
}
FieldExtractor
The preceding example may be useful for the most basic uses of a writing to a file.
However, most users of the FlatFileItemWriter
have a domain object that needs to be
written out and, thus, must be converted into a line. In file reading, the following was
required:
-
Read one line from the file.
-
Pass the line into the
LineTokenizer#tokenize()
method, in order to retrieve aFieldSet
. -
Pass the
FieldSet
returned from tokenizing to aFieldSetMapper
, returning the result from theItemReader#read()
method.
File writing has similar but inverse steps:
-
Pass the item to be written to the writer.
-
Convert the fields on the item into an array.
-
Aggregate the resulting array into a line.
Because there is no way for the framework to know which fields from the object need to
be written out, a FieldExtractor
must be written to accomplish the task of turning the
item into an array, as shown in the following interface definition:
public interface FieldExtractor<T> {
Object[] extract(T item);
}
Implementations of the FieldExtractor
interface should create an array from the fields
of the provided object, which can then be written out with a delimiter between the
elements or as part of a fixed-width line.
PassThroughFieldExtractor
There are many cases where a collection, such as an array, Collection
, or FieldSet
,
needs to be written out. "Extracting" an array from one of these collection types is very
straightforward. To do so, convert the collection to an array. Therefore, the
PassThroughFieldExtractor
should be used in this scenario. It should be noted that, if
the object passed in is not a type of collection, then the PassThroughFieldExtractor
returns an array containing solely the item to be extracted.
BeanWrapperFieldExtractor
As with the BeanWrapperFieldSetMapper
described in the file reading section, it is
often preferable to configure how to convert a domain object to an object array, rather
than writing the conversion yourself. The BeanWrapperFieldExtractor
provides this
functionality, as shown in the following example:
BeanWrapperFieldExtractor<Name> extractor = new BeanWrapperFieldExtractor<>();
extractor.setNames(new String[] { "first", "last", "born" });
String first = "Alan";
String last = "Turing";
int born = 1912;
Name n = new Name(first, last, born);
Object[] values = extractor.extract(n);
assertEquals(first, values[0]);
assertEquals(last, values[1]);
assertEquals(born, values[2]);
This extractor implementation has only one required property: the names of the fields to
map. Just as the BeanWrapperFieldSetMapper
needs field names to map fields on the
FieldSet
to setters on the provided object, the BeanWrapperFieldExtractor
needs names
to map to getters for creating an object array. It is worth noting that the order of the
names determines the order of the fields within the array.
Delimited File Writing Example
The most basic flat file format is one in which all fields are separated by a delimiter.
This can be accomplished using a DelimitedLineAggregator
. The following example writes
out a simple domain object that represents a credit to a customer account:
public class CustomerCredit {
private int id;
private String name;
private BigDecimal credit;
//getters and setters removed for clarity
}
Because a domain object is being used, an implementation of the FieldExtractor
interface must be provided, along with the delimiter to use.
The following example shows how to use the FieldExtractor
with a delimiter in Java:
@Bean
public FlatFileItemWriter<CustomerCredit> itemWriter(Resource outputResource) throws Exception {
BeanWrapperFieldExtractor<CustomerCredit> fieldExtractor = new BeanWrapperFieldExtractor<>();
fieldExtractor.setNames(new String[] {"name", "credit"});
fieldExtractor.afterPropertiesSet();
DelimitedLineAggregator<CustomerCredit> lineAggregator = new DelimitedLineAggregator<>();
lineAggregator.setDelimiter(",");
lineAggregator.setFieldExtractor(fieldExtractor);
return new FlatFileItemWriterBuilder<CustomerCredit>()
.name("customerCreditWriter")
.resource(outputResource)
.lineAggregator(lineAggregator)
.build();
}
In the previous example, the BeanWrapperFieldExtractor
described earlier in this
chapter is used to turn the name and credit fields within CustomerCredit
into an object
array, which is then written out with commas between each field.
It is also possible to use the FlatFileItemWriterBuilder.DelimitedBuilder
to
automatically create the BeanWrapperFieldExtractor
and DelimitedLineAggregator
as shown in the following example:
@Bean
public FlatFileItemWriter<CustomerCredit> itemWriter(Resource outputResource) throws Exception {
return new FlatFileItemWriterBuilder<CustomerCredit>()
.name("customerCreditWriter")
.resource(outputResource)
.delimited()
.delimiter("|")
.names(new String[] {"name", "credit"})
.build();
}
Fixed Width File Writing Example
Delimited is not the only type of flat file format. Many prefer to use a set width for
each column to delineate between fields, which is usually referred to as 'fixed width'.
Spring Batch supports this in file writing with the FormatterLineAggregator
.
@Bean
public FlatFileItemWriter<CustomerCredit> itemWriter(Resource outputResource) throws Exception {
BeanWrapperFieldExtractor<CustomerCredit> fieldExtractor = new BeanWrapperFieldExtractor<>();
fieldExtractor.setNames(new String[] {"name", "credit"});
fieldExtractor.afterPropertiesSet();
FormatterLineAggregator<CustomerCredit> lineAggregator = new FormatterLineAggregator<>();
lineAggregator.setFormat("%-9s%-2.0f");
lineAggregator.setFieldExtractor(fieldExtractor);
return new FlatFileItemWriterBuilder<CustomerCredit>()
.name("customerCreditWriter")
.resource(outputResource)
.lineAggregator(lineAggregator)
.build();
}
Most of the preceding example should look familiar. However, the value of the format property is new.
The following example shows the format property in Java:
...
FormatterLineAggregator<CustomerCredit> lineAggregator = new FormatterLineAggregator<>();
lineAggregator.setFormat("%-9s%-2.0f");
...
The underlying implementation is built using the same
Formatter
added as part of Java 5. The Java
Formatter
is based on the
printf
functionality of the C programming
language. Most details on how to configure a formatter can be found in
the Javadoc of Formatter.
It is also possible to use the FlatFileItemWriterBuilder.FormattedBuilder
to
automatically create the BeanWrapperFieldExtractor
and FormatterLineAggregator
as shown in following example:
@Bean
public FlatFileItemWriter<CustomerCredit> itemWriter(Resource outputResource) throws Exception {
return new FlatFileItemWriterBuilder<CustomerCredit>()
.name("customerCreditWriter")
.resource(outputResource)
.formatted()
.format("%-9s%-2.0f")
.names(new String[] {"name", "credit"})
.build();
}
Handling File Creation
FlatFileItemReader
has a very simple relationship with file resources. When the reader
is initialized, it opens the file (if it exists), and throws an exception if it does not.
File writing isn’t quite so simple. At first glance, it seems like a similar
straightforward contract should exist for FlatFileItemWriter
: If the file already
exists, throw an exception, and, if it does not, create it and start writing. However,
potentially restarting a Job
can cause issues. In normal restart scenarios, the
contract is reversed: If the file exists, start writing to it from the last known good
position, and, if it does not, throw an exception. However, what happens if the file name
for this job is always the same? In this case, you would want to delete the file if it
exists, unless it’s a restart. Because of this possibility, the FlatFileItemWriter
contains the property, shouldDeleteIfExists
. Setting this property to true causes an
existing file with the same name to be deleted when the writer is opened.
XML Item Readers and Writers
Spring Batch provides transactional infrastructure for both reading XML records and mapping them to Java objects as well as writing Java objects as XML records.
Constraints on streaming XML
The StAX API is used for I/O, as other standard XML parsing APIs do not fit batch processing requirements (DOM loads the whole input into memory at once and SAX controls the parsing process by allowing the user to provide only callbacks). |
JSON Item Readers And Writers
Spring Batch provides support for reading and Writing JSON resources in the following format:
[
{
"isin": "123",
"quantity": 1,
"price": 1.2,
"customer": "foo"
},
{
"isin": "456",
"quantity": 2,
"price": 1.4,
"customer": "bar"
}
]
It is assumed that the JSON resource is an array of JSON objects corresponding to individual items. Spring Batch is not tied to any particular JSON library.
.1. JsonItemReader
The JsonItemReader
delegates JSON parsing and binding to implementations of the
org.springframework.batch.item.json.JsonObjectReader
interface. This interface
is intended to be implemented by using a streaming API to read JSON objects
in chunks. Two implementations are currently provided:
- Jackson through the
org.springframework.batch.item.json.JacksonJsonObjectReader
- Gson through the
org.springframework.batch.item.json.GsonJsonObjectReader
- To be able to process JSON records, the following is needed:
Resource
: A Spring Resource that represents the JSON file to read.JsonObjectReader
: A JSON object reader to parse and bind JSON objects to items
The following example shows how to define a JsonItemReader
that works with the
previous JSON resource org/springframework/batch/item/json/trades.json
and a
JsonObjectReader
based on Jackson:
@Bean
public JsonItemReader<Trade> jsonItemReader() {
return new JsonItemReaderBuilder<Trade>()
.jsonObjectReader(new JacksonJsonObjectReader<>(Trade.class))
.resource(new ClassPathResource("trades.json"))
.name("tradeJsonItemReader")
.build();
}
.2. JsonFileItemWriter
The JsonFileItemWriter
delegates the marshalling of items to the
org.springframework.batch.item.json.JsonObjectMarshaller
interface. The contract
of this interface is to take an object and marshall it to a JSON String
.
Two implementations are currently provided:
- Jackson through the
org.springframework.batch.item.json.JacksonJsonObjectMarshaller
- Gson through the
org.springframework.batch.item.json.GsonJsonObjectMarshaller
- To be able to write JSON records, the following is needed:
Resource
: A SpringResource
that represents the JSON file to writeJsonObjectMarshaller
: A JSON object marshaller to marshall objects to JSON format
The following example shows how to define a JsonFileItemWriter
:
@Bean
public JsonFileItemWriter<Trade> jsonFileItemWriter() {
return new JsonFileItemWriterBuilder<Trade>()
.jsonObjectMarshaller(new JacksonJsonObjectMarshaller<>())
.resource(new ClassPathResource("trades.json"))
.name("tradeJsonFileItemWriter")
.build();
}
Multi-File Input
It is a common requirement to process multiple files within a single Step
. Assuming the
files all have the same formatting, the MultiResourceItemReader
supports this type of
input for both XML and flat file processing. Consider the following files in a directory:
file-1.txt file-2.txt ignored.txt
file-1.txt and file-2.txt are formatted the same and, for business reasons, should be
processed together. The MuliResourceItemReader
can be used to read in both files by
using wildcards.
The following example shows how to read files with wildcards in Java:
@Bean
public MultiResourceItemReader multiResourceReader() {
return new MultiResourceItemReaderBuilder<Foo>()
.delegate(flatFileItemReader())
.resources(resources())
.build();
}
The referenced delegate is a simple FlatFileItemReader
. The above configuration reads
input from both files, handling rollback and restart scenarios. It should be noted that,
as with any ItemReader
, adding extra input (in this case a file) could cause potential
issues when restarting. It is recommended that batch jobs work with their own individual
directories until completed successfully.
Input resources are ordered by using MultiResourceItemReader#setComparator(Comparator)
to make sure resource ordering is preserved between job runs in restart scenario.
|
Database
Like most enterprise application styles, a database is the central storage mechanism for batch. However, batch differs from other application styles due to the sheer size of the datasets with which the system must work. If a SQL statement returns 1 million rows, the result set probably holds all returned results in memory until all rows have been read. Spring Batch provides two types of solutions for this problem:
While both flat files and XML files have a specific ItemWriter
instance, there is no exact equivalent
in the database world. This is because transactions provide all the needed functionality.
ItemWriter
implementations are necessary for files because they must act as if they’re transactional,
keeping track of written items and flushing or clearing at the appropriate times.
Databases have no need for this functionality, since the write is already contained in a
transaction. Users can create their own DAOs that implement the ItemWriter
interface or
use one from a custom ItemWriter
that’s written for generic processing concerns. Either
way, they should work without any issues. One thing to look out for is the performance
and error handling capabilities that are provided by batching the outputs. This is most
common when using hibernate as an ItemWriter
but could have the same issues when using
JDBC batch mode. Batching database output does not have any inherent flaws, assuming we
are careful to flush and there are no errors in the data. However, any errors while
writing can cause confusion, because there is no way to know which individual item caused
an exception or even if any individual item was responsible, as illustrated in the
following image:
If items are buffered before being written, any errors are not thrown until the buffer is
flushed just before a commit. For example, assume that 20 items are written per chunk,
and the 15th item throws a DataIntegrityViolationException
. As far as the Step
is concerned, all 20 item are written successfully, since there is no way to know that an
error occurs until they are actually written. Once Session#flush()
is called, the
buffer is emptied and the exception is hit. At this point, there is nothing the Step
can do. The transaction must be rolled back. Normally, this exception might cause the
item to be skipped (depending upon the skip/retry policies), and then it is not written
again. However, in the batched scenario, there is no way to know which item caused the
issue. The whole buffer was being written when the failure happened. The only way to
solve this issue is to flush after each item, as shown in the following image:
This is a common use case, especially when using Hibernate, and the simple guideline for
implementations of ItemWriter
is to flush on each call to write()
. Doing so allows
for items to be skipped reliably, with Spring Batch internally taking care of the
granularity of the calls to ItemWriter
after an error.
. Reusing Existing Services
Batch systems are often used in conjunction with other application styles. The most
common is an online system, but it may also support integration or even a thick client
application by moving necessary bulk data that each application style uses. For this
reason, it is common that many users want to reuse existing DAOs or other services within
their batch jobs. The Spring container itself makes this fairly easy by allowing any
necessary class to be injected. However, there may be cases where the existing service
needs to act as an ItemReader
or ItemWriter
, either to satisfy the dependency of
another Spring Batch class or because it truly is the main ItemReader
for a step. It is
fairly trivial to write an adapter class for each service that needs wrapping, but
because it is such a common concern, Spring Batch provides implementations:
ItemReaderAdapter
and ItemWriterAdapter
. Both classes implement the standard Spring
method by invoking the delegate pattern and are fairly simple to set up.
The following Java example uses the ItemReaderAdapter
:
@Bean
public ItemReaderAdapter itemReader() {
ItemReaderAdapter reader = new ItemReaderAdapter();
reader.setTargetObject(fooService());
reader.setTargetMethod("generateFoo");
return reader;
}
@Bean
public FooService fooService() {
return new FooService();
}
One important point to note is that the contract of the targetMethod
must be the same
as the contract for read
: When exhausted, it returns null
. Otherwise, it returns an
Object
. Anything else prevents the framework from knowing when processing should end,
either causing an infinite loop or incorrect failure, depending upon the implementation
of the ItemWriter
.
The following Java example uses the ItemWriterAdapter
:
@Bean
public ItemWriterAdapter itemWriter() {
ItemWriterAdapter writer = new ItemWriterAdapter();
writer.setTargetObject(fooService());
writer.setTargetMethod("processFoo");
return writer;
}
@Bean
public FooService fooService() {
return new FooService();
}
. Creating Custom ItemReaders and ItemWriters
So far, this chapter has discussed the basic contracts of reading and writing in Spring
Batch and some common implementations for doing so. However, these are all fairly
generic, and there are many potential scenarios that may not be covered by out-of-the-box
implementations. This section shows, by using a simple example, how to create a custom
ItemReader
and ItemWriter
implementation and implement their contracts correctly. The
ItemReader
also implements ItemStream
, in order to illustrate how to make a reader or
writer restartable.
.1. Custom ItemReader
Example
For the purpose of this example, we create a simple ItemReader
implementation that
reads from a provided list. We start by implementing the most basic contract of
ItemReader
, the read
method, as shown in the following code:
public class CustomItemReader<T> implements ItemReader<T> {
List<T> items;
public CustomItemReader(List<T> items) {
this.items = items;
}
public T read() throws Exception, UnexpectedInputException,
NonTransientResourceException, ParseException {
if (!items.isEmpty()) {
return items.remove(0);
}
return null;
}
}
The preceding class takes a list of items and returns them one at a time, removing each
from the list. When the list is empty, it returns null
, thus satisfying the most basic
requirements of an ItemReader
, as illustrated in the following test code:
List<String> items = new ArrayList<>();
items.add("1");
items.add("2");
items.add("3");
ItemReader itemReader = new CustomItemReader<>(items);
assertEquals("1", itemReader.read());
assertEquals("2", itemReader.read());
assertEquals("3", itemReader.read());
assertNull(itemReader.read());
Making the ItemReader
Restartable
The final challenge is to make the ItemReader
restartable. Currently, if processing is
interrupted and begins again, the ItemReader
must start at the beginning. This is
actually valid in many scenarios, but it is sometimes preferable that a batch job
restarts where it left off. The key discriminant is often whether the reader is stateful
or stateless. A stateless reader does not need to worry about restartability, but a
stateful one has to try to reconstitute its last known state on restart. For this reason,
we recommend that you keep custom readers stateless if possible, so you need not worry
about restartability.
If you do need to store state, then the ItemStream
interface should be used:
public class CustomItemReader<T> implements ItemReader<T>, ItemStream {
List<T> items;
int currentIndex = 0;
private static final String CURRENT_INDEX = "current.index";
public CustomItemReader(List<T> items) {
this.items = items;
}
public T read() throws Exception, UnexpectedInputException,
ParseException, NonTransientResourceException {
if (currentIndex < items.size()) {
return items.get(currentIndex++);
}
return null;
}
public void open(ExecutionContext executionContext) throws ItemStreamException {
if (executionContext.containsKey(CURRENT_INDEX)) {
currentIndex = new Long(executionContext.getLong(CURRENT_INDEX)).intValue();
}
else {
currentIndex = 0;
}
}
public void update(ExecutionContext executionContext) throws ItemStreamException {
executionContext.putLong(CURRENT_INDEX, new Long(currentIndex).longValue());
}
public void close() throws ItemStreamException {}
}
On each call to the ItemStream
update
method, the current index of the ItemReader
is stored in the provided ExecutionContext
with a key of 'current.index'. When the
ItemStream
open
method is called, the ExecutionContext
is checked to see if it
contains an entry with that key. If the key is found, then the current index is moved to
that location. This is a fairly trivial example, but it still meets the general contract:
ExecutionContext executionContext = new ExecutionContext();
((ItemStream)itemReader).open(executionContext);
assertEquals("1", itemReader.read());
((ItemStream)itemReader).update(executionContext);
List<String> items = new ArrayList<>();
items.add("1");
items.add("2");
items.add("3");
itemReader = new CustomItemReader<>(items);
((ItemStream)itemReader).open(executionContext);
assertEquals("2", itemReader.read());
Most ItemReaders
have much more sophisticated restart logic. The
JdbcCursorItemReader
, for example, stores the row ID of the last processed row in the
cursor.
It is also worth noting that the key used within the ExecutionContext
should not be
trivial. That is because the same ExecutionContext
is used for all ItemStreams
within
a Step
. In most cases, simply prepending the key with the class name should be enough
to guarantee uniqueness. However, in the rare cases where two of the same type of
ItemStream
are used in the same step (which can happen if two files are needed for
output), a more unique name is needed. For this reason, many of the Spring Batch
ItemReader
and ItemWriter
implementations have a setName()
property that lets this
key name be overridden.
.2. Custom ItemWriter
Example
Implementing a Custom ItemWriter
is similar in many ways to the ItemReader
example
above but differs in enough ways as to warrant its own example. However, adding
restartability is essentially the same, so it is not covered in this example. As with the
ItemReader
example, a List
is used in order to keep the example as simple as
possible:
public class CustomItemWriter<T> implements ItemWriter<T> {
List<T> output = TransactionAwareProxyFactory.createTransactionalList();
public void write(List<? extends T> items) throws Exception {
output.addAll(items);
}
public List<T> getOutput() {
return output;
}
}
Making the ItemWriter
Restartable
To make the ItemWriter
restartable, we would follow the same process as for the
ItemReader
, adding and implementing the ItemStream
interface to synchronize the
execution context. In the example, we might have to count the number of items processed
and add that as a footer record. If we needed to do that, we could implement
ItemStream
in our ItemWriter
so that the counter was reconstituted from the execution
context if the stream was re-opened.
In many realistic cases, custom ItemWriters
also delegate to another writer that itself
is restartable (for example, when writing to a file), or else it writes to a
transactional resource and so does not need to be restartable, because it is stateless.
When you have a stateful writer you should probably be sure to implement ItemStream
as
well as ItemWriter
. Remember also that the client of the writer needs to be aware of
the ItemStream
, so you may need to register it as a stream in the configuration.
Item Reader and Writer Implementations
In this section, we will introduce you to readers and writers that have not already been discussed in the previous sections.
. Decorators
In some cases, a user needs specialized behavior to be appended to a pre-existing
ItemReader
. Spring Batch offers some out of the box decorators that can add
additional behavior to to your ItemReader
and ItemWriter
implementations.
Spring Batch includes the following decorators:
SynchronizedItemStreamReader
SingleItemPeekableItemReader
SynchronizedItemStreamWriter
MultiResourceItemWriter
ClassifierCompositeItemWriter
ClassifierCompositeItemProcessor
SynchronizedItemStreamReader
When using an ItemReader
that is not thread safe, Spring Batch offers the
SynchronizedItemStreamReader
decorator, which can be used to make the ItemReader
thread safe. Spring Batch provides a SynchronizedItemStreamReaderBuilder
to construct
an instance of the SynchronizedItemStreamReader
.
SingleItemPeekableItemReader
Spring Batch includes a decorator that adds a peek method to an ItemReader
. This peek
method lets the user peek one item ahead. Repeated calls to the peek returns the same
item, and this is the next item returned from the read
method. Spring Batch provides a
SingleItemPeekableItemReaderBuilder
to construct an instance of the
SingleItemPeekableItemReader
.
SingleItemPeekableItemReader’s peek method is not thread-safe, because it would not be possible to honor the peek in multiple threads. Only one of the threads that peeked would get that item in the next call to read. |
SynchronizedItemStreamWriter
When using an ItemWriter
that is not thread safe, Spring Batch offers the
SynchronizedItemStreamWriter
decorator, which can be used to make the ItemWriter
thread safe. Spring Batch provides a SynchronizedItemStreamWriterBuilder
to construct
an instance of the SynchronizedItemStreamWriter
.
MultiResourceItemWriter
The MultiResourceItemWriter
wraps a ResourceAwareItemWriterItemStream
and creates a new
output resource when the count of items written in the current resource exceeds the
itemCountLimitPerResource
. Spring Batch provides a MultiResourceItemWriterBuilder
to
construct an instance of the MultiResourceItemWriter
.
ClassifierCompositeItemWriter
The ClassifierCompositeItemWriter
calls one of a collection of ItemWriter
implementations for each item, based on a router pattern implemented through the provided
Classifier
. The implementation is thread-safe if all delegates are thread-safe. Spring
Batch provides a ClassifierCompositeItemWriterBuilder
to construct an instance of the
ClassifierCompositeItemWriter
.
ClassifierCompositeItemProcessor
The ClassifierCompositeItemProcessor
is an ItemProcessor
that calls one of a
collection of ItemProcessor
implementations, based on a router pattern implemented
through the provided Classifier
. Spring Batch provides a
ClassifierCompositeItemProcessorBuilder
to construct an instance of the
ClassifierCompositeItemProcessor
.
. Messaging Readers And Writers
Spring Batch offers the following readers and writers for commonly used messaging systems:
AmqpItemReader
The AmqpItemReader
is an ItemReader
that uses an AmqpTemplate
to receive or convert
messages from an exchange. Spring Batch provides a AmqpItemReaderBuilder
to construct
an instance of the AmqpItemReader
.
AmqpItemWriter
The AmqpItemWriter
is an ItemWriter
that uses an AmqpTemplate
to send messages to
an AMQP exchange. Messages are sent to the nameless exchange if the name not specified in
the provided AmqpTemplate
. Spring Batch provides an AmqpItemWriterBuilder
to
construct an instance of the AmqpItemWriter
.
JmsItemReader
The JmsItemReader
is an ItemReader
for JMS that uses a JmsTemplate
. The template
should have a default destination, which is used to provide items for the read()
method. Spring Batch provides a JmsItemReaderBuilder
to construct an instance of the
JmsItemReader
.
JmsItemWriter
The JmsItemWriter
is an ItemWriter
for JMS that uses a JmsTemplate
. The template
should have a default destination, which is used to send items in write(List)
. Spring
Batch provides a JmsItemWriterBuilder
to construct an instance of the JmsItemWriter
.
KafkaItemReader
The KafkaItemReader
is an ItemReader
for an Apache Kafka topic. It can be configured
to read messages from multiple partitions of the same topic. It stores message offsets
in the execution context to support restart capabilities. Spring Batch provides a
KafkaItemReaderBuilder
to construct an instance of the KafkaItemReader
.
6.13.3. Database Readers
Spring Batch offers the following database readers:
Neo4jItemReader
MongoItemReader
HibernateCursorItemReader
HibernatePagingItemReader
RepositoryItemReader
Neo4jItemReader
The Neo4jItemReader
is an ItemReader
that reads objects from the graph database Neo4j
by using a paging technique. Spring Batch provides a Neo4jItemReaderBuilder
to
construct an instance of the Neo4jItemReader
.
MongoItemReader
The MongoItemReader
is an ItemReader
that reads documents from MongoDB by using a
paging technique. Spring Batch provides a MongoItemReaderBuilder
to construct an
instance of the MongoItemReader
.
HibernateCursorItemReader
The HibernateCursorItemReader
is an ItemStreamReader
for reading database records
built on top of Hibernate. It executes the HQL query and then, when initialized, iterates
over the result set as the read()
method is called, successively returning an object
corresponding to the current row. Spring Batch provides a
HibernateCursorItemReaderBuilder
to construct an instance of the
HibernateCursorItemReader
.
HibernatePagingItemReader
The HibernatePagingItemReader
is an ItemReader
for reading database records built on
top of Hibernate and reading only up to a fixed number of items at a time. Spring Batch
provides a HibernatePagingItemReaderBuilder
to construct an instance of the
HibernatePagingItemReader
.
. Database Writers
Spring Batch offers the following database writers:
Neo4jItemWriter
MongoItemWriter
RepositoryItemWriter
HibernateItemWriter
JdbcBatchItemWriter
JpaItemWriter
GemfireItemWriter
Neo4jItemWriter
The Neo4jItemWriter
is an ItemWriter
implementation that writes to a Neo4j database.
Spring Batch provides a Neo4jItemWriterBuilder
to construct an instance of the
Neo4jItemWriter
.
MongoItemWriter
The MongoItemWriter
is an ItemWriter
implementation that writes to a MongoDB store
using an implementation of Spring Data’s MongoOperations
. Spring Batch provides a
MongoItemWriterBuilder
to construct an instance of the MongoItemWriter
.
RepositoryItemWriter
The RepositoryItemWriter
is an ItemWriter
wrapper for a CrudRepository
from Spring
Data. Spring Batch provides a RepositoryItemWriterBuilder
to construct an instance of
the RepositoryItemWriter
.
HibernateItemWriter
The HibernateItemWriter
is an ItemWriter
that uses a Hibernate session to save or
update entities that are not part of the current Hibernate session. Spring Batch provides
a HibernateItemWriterBuilder
to construct an instance of the HibernateItemWriter
.
JdbcBatchItemWriter
The JdbcBatchItemWriter
is an ItemWriter
that uses the batching features from
NamedParameterJdbcTemplate
to execute a batch of statements for all items provided.
Spring Batch provides a JdbcBatchItemWriterBuilder
to construct an instance of the
JdbcBatchItemWriter
.
. Specialized Readers
Spring Batch offers the following specialized readers:
LdifReader
The LdifReader
reads LDIF (LDAP Data Interchange Format) records from a Resource
,
parses them, and returns a LdapAttribute
object for each read
executed. Spring Batch
provides a LdifReaderBuilder
to construct an instance of the LdifReader
.
MappingLdifReader
The MappingLdifReader
reads LDIF (LDAP Data Interchange Format) records from a
Resource
, parses them then maps each LDIF record to a POJO (Plain Old Java Object).
Each read returns a POJO. Spring Batch provides a MappingLdifReaderBuilder
to construct
an instance of the MappingLdifReader
.
AvroItemReader
The AvroItemReader
reads serialized Avro data from a Resource.
Each read returns an instance of the type specified by a Java class or Avro Schema.
The reader may be optionally configured for input that embeds an Avro schema or not.
Spring Batch provides an AvroItemReaderBuilder
to construct an instance of the AvroItemReader
.
. Specialized Writers
Spring Batch offers the following specialized writers:
Item processing
The ItemReader and ItemWriter interfaces are both very useful for their specific
tasks, but what if you want to insert business logic before writing? One option for both
reading and writing is to use the composite pattern: Create an ItemWriter
that contains
another ItemWriter
or an ItemReader
that contains another ItemReader
. The following
code shows an example:
public class CompositeItemWriter<T> implements ItemWriter<T> {
ItemWriter<T> itemWriter;
public CompositeItemWriter(ItemWriter<T> itemWriter) {
this.itemWriter = itemWriter;
}
public void write(List<? extends T> items) throws Exception {
//Add business logic here
itemWriter.write(items);
}
public void setDelegate(ItemWriter<T> itemWriter){
this.itemWriter = itemWriter;
}
}
The preceding class contains another ItemWriter
to which it delegates after having
provided some business logic. This pattern could easily be used for an ItemReader
as
well, perhaps to obtain more reference data based upon the input that was provided by the
main ItemReader
. It is also useful if you need to control the call to write
yourself.
However, if you only want to 'transform' the item passed in for writing before it is
actually written, you need not write
yourself. You can just modify the item. For this
scenario, Spring Batch provides the ItemProcessor
interface, as shown in the following
interface definition:
public interface ItemProcessor<I, O> {
O process(I item) throws Exception;
}
An ItemProcessor
is simple. Given one object, transform it and return another. The
provided object may or may not be of the same type. The point is that business logic may
be applied within the process, and it is completely up to the developer to create that
logic. An ItemProcessor
can be wired directly into a step. For example, assume an
ItemReader
provides a class of type Foo
and that it needs to be converted to type Bar
before being written out. The following example shows an ItemProcessor
that performs
the conversion:
public class Foo {}
public class Bar {
public Bar(Foo foo) {}
}
public class FooProcessor implements ItemProcessor<Foo, Bar> {
public Bar process(Foo foo) throws Exception {
//Perform simple transformation, convert a Foo to a Bar
return new Bar(foo);
}
}
public class BarWriter implements ItemWriter<Bar> {
public void write(List<? extends Bar> bars) throws Exception {
//write bars
}
}
In the preceding example, there is a class Foo
, a class Bar
, and a class
FooProcessor
that adheres to the ItemProcessor
interface. The transformation is
simple, but any type of transformation could be done here. The BarWriter
writes Bar
objects, throwing an exception if any other type is provided. Similarly, the
FooProcessor
throws an exception if anything but a Foo
is provided. The
FooProcessor
can then be injected into a Step
, as shown in the following example:
@Bean
public Job ioSampleJob() {
return this.jobBuilderFactory.get("ioSampleJob")
.start(step1())
.build();
}
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<Foo, Bar>chunk(2)
.reader(fooReader())
.processor(fooProcessor())
.writer(barWriter())
.build();
}
A difference between ItemProcessor
and ItemReader
or ItemWriter
is that an ItemProcessor
is optional for a Step
.
Scaling and Parallel Processing
Many batch processing problems can be solved with single threaded, single process jobs, so it is always a good idea to properly check if that meets your needs before thinking about more complex implementations. Measure the performance of a realistic job and see if the simplest implementation meets your needs first. You can read and write a file of several hundred megabytes in well under a minute, even with standard hardware.
When you are ready to start implementing a job with some parallel processing, Spring Batch offers a range of options, which are described in this chapter, although some features are covered elsewhere. At a high level, there are two modes of parallel processing:
- Single process, multi-threaded
- Multi-process
These break down into categories as well, as follows:
- Multi-threaded Step (single process)
- Parallel Steps (single process)
- Remote Chunking of Step (multi process)
- Partitioning a Step (single or multi process)
First, we review the single-process options. Then we review the multi-process options.
.1. Multi-threaded Step
The simplest way to start parallel processing is to add a TaskExecutor
to your Step
configuration.
When using java configuration, a TaskExecutor
can be added to the step,
as shown in the following example:
@Bean
public TaskExecutor taskExecutor() {
return new SimpleAsyncTaskExecutor("spring_batch");
}
@Bean
public Step sampleStep(TaskExecutor taskExecutor) {
return this.stepBuilderFactory.get("sampleStep")
.<String, String>chunk(10)
.reader(itemReader())
.writer(itemWriter())
.taskExecutor(taskExecutor)
.build();
}
In this example, the taskExecutor
is a reference to another bean definition that
implements the TaskExecutor
interface.
TaskExecutor
is a standard Spring interface, so consult the Spring User Guide for details of available
implementations. The simplest multi-threaded TaskExecutor
is a
SimpleAsyncTaskExecutor
.
The result of the above configuration is that the Step
executes by reading, processing,
and writing each chunk of items (each commit interval) in a separate thread of execution.
Note that this means there is no fixed order for the items to be processed, and a chunk
might contain items that are non-consecutive compared to the single-threaded case. In
addition to any limits placed by the task executor (such as whether it is backed by a
thread pool), there is a throttle limit in the tasklet configuration which defaults to 4.
You may need to increase this to ensure that a thread pool is fully utilized.
When using Java configuration, the builders provide access to the throttle limit, as shown in the following example:
@Bean
public Step sampleStep(TaskExecutor taskExecutor) {
return this.stepBuilderFactory.get("sampleStep")
.<String, String>chunk(10)
.reader(itemReader())
.writer(itemWriter())
.taskExecutor(taskExecutor)
.throttleLimit(20)
.build();
}
Note also that there may be limits placed on concurrency by any pooled resources used in
your step, such as a DataSource
. Be sure to make the pool in those resources at least
as large as the desired number of concurrent threads in the step.
There are some practical limitations of using multi-threaded Step
implementations for
some common batch use cases. Many participants in a Step
(such as readers and writers)
are stateful. If the state is not segregated by thread, then those components are not
usable in a multi-threaded Step
. In particular, most of the off-the-shelf readers and
writers from Spring Batch are not designed for multi-threaded use. It is, however,
possible to work with stateless or thread safe readers and writers, and there is a sample
(called parallelJob
) in the
Spring
Batch Samples that shows the use of a process indicator (see
Preventing State Persistence) to keep track
of items that have been processed in a database input table.
Spring Batch provides some implementations of ItemWriter
and ItemReader
. Usually,
they say in the Javadoc if they are thread safe or not or what you have to do to avoid
problems in a concurrent environment. If there is no information in the Javadoc, you can
check the implementation to see if there is any state. If a reader is not thread safe,
you can decorate it with the provided SynchronizedItemStreamReader
or use it in your own
synchronizing delegator. You can synchronize the call to read()
and as long as the
processing and writing is the most expensive part of the chunk, your step may still
complete much faster than it would in a single threaded configuration.
.2. Parallel Steps
As long as the application logic that needs to be parallelized can be split into distinct responsibilities and assigned to individual steps, then it can be parallelized in a single process. Parallel Step execution is easy to configure and use.
When using Java configuration, executing steps (step1,step2)
in parallel with step3
is straightforward, as shown in the following example:
@Bean
public Job job() {
return jobBuilderFactory.get("job")
.start(splitFlow())
.next(step4())
.build() //builds FlowJobBuilder instance
.build(); //builds Job instance
}
@Bean
public Flow splitFlow() {
return new FlowBuilder<SimpleFlow>("splitFlow")
.split(taskExecutor())
.add(flow1(), flow2())
.build();
}
@Bean
public Flow flow1() {
return new FlowBuilder<SimpleFlow>("flow1")
.start(step1())
.next(step2())
.build();
}
@Bean
public Flow flow2() {
return new FlowBuilder<SimpleFlow>("flow2")
.start(step3())
.build();
}
@Bean
public TaskExecutor taskExecutor() {
return new SimpleAsyncTaskExecutor("spring_batch");
}
The configurable task executor is used to specify which TaskExecutor
implementation should be used to execute the individual flows. The default is
SyncTaskExecutor
, but an asynchronous TaskExecutor
is required to run the steps in
parallel. Note that the job ensures that every flow in the split completes before
aggregating the exit statuses and transitioning.
See the section on Split Flows for more detail.
.3. Remote Chunking
In remote chunking, the Step
processing is split across multiple processes,
communicating with each other through some middleware. The following image shows the
pattern:
The manager component is a single process, and the workers are multiple remote processes. This pattern works best if the manager is not a bottleneck, so the processing must be more expensive than the reading of items (as is often the case in practice).
The manager is an implementation of a Spring Batch Step
with the ItemWriter
replaced
by a generic version that knows how to send chunks of items to the middleware as
messages. The workers are standard listeners for whatever middleware is being used (for
example, with JMS, they would be MesssageListener
implementations), and their role is
to process the chunks of items using a standard ItemWriter
or ItemProcessor
plus
ItemWriter
, through the ChunkProcessor
interface. One of the advantages of using this
pattern is that the reader, processor, and writer components are off-the-shelf (the same
as would be used for a local execution of the step). The items are divided up dynamically
and work is shared through the middleware, so that, if the listeners are all eager
consumers, then load balancing is automatic.
The middleware has to be durable, with guaranteed delivery and a single consumer for each message. JMS is the obvious candidate, but other options (such as JavaSpaces) exist in the grid computing and shared memory product space.
See the section on Spring Batch Integration - Remote Chunking for more detail.
.4. Partitioning
Spring Batch also provides an SPI for partitioning a Step
execution and executing it
remotely. In this case, the remote participants are Step
instances that could just as
easily have been configured and used for local processing. The following image shows the
pattern:
The Job
runs on the left-hand side as a sequence of Step
instances, and one of the
Step
instances is labeled as a manager. The workers in this picture are all identical
instances of a Step
, which could in fact take the place of the manager, resulting in the
same outcome for the Job
. The workers are typically going to be remote services but
could also be local threads of execution. The messages sent by the manager to the workers
in this pattern do not need to be durable or have guaranteed delivery. Spring Batch
metadata in the JobRepository
ensures that each worker is executed once and only once for
each Job
execution.
The SPI in Spring Batch consists of a special implementation of Step
(called the
PartitionStep
) and two strategy interfaces that need to be implemented for the specific
environment. The strategy interfaces are PartitionHandler
and StepExecutionSplitter.
The Step
on the right in this case is the “remote” worker, so, potentially, there are
many objects and or processes playing this role, and the PartitionStep
is shown driving
the execution.
The following example shows the PartitionStep
configuration when using Java
configuration:
@Bean
public Step step1Manager() {
return stepBuilderFactory.get("step1.manager")
.<String, String>partitioner("step1", partitioner())
.step(step1())
.gridSize(10)
.taskExecutor(taskExecutor())
.build();
}
Similar to the multi-threaded step’s throttle-limit
attribute, the grid-size
attribute prevents the task executor from being saturated with requests from a single
step.
There is a simple example that can be copied and extended in the unit test suite for
Spring
Batch Samples (see partition*Job.xml
configuration).
Spring Batch creates step executions for the partitions called "step1:partition0", and so
on. Many people prefer to call the manager step "step1:manager" for consistency. You can
use an alias for the step (by specifying the name
attribute instead of the id
attribute).
. PartitionHandler
The PartitionHandler
is the component that knows about the fabric of the remoting or
grid environment. It is able to send StepExecution
requests to the remote Step
instances, wrapped in some fabric-specific format, like a DTO. It does not have to know
how to split the input data or how to aggregate the result of multiple Step
executions.
Generally speaking, it probably also does not need to know about resilience or failover,
since those are features of the fabric in many cases. In any case, Spring Batch always
provides restartability independent of the fabric. A failed Job
can always be restarted
and only the failed Steps
are re-executed.
The PartitionHandler
interface can have specialized implementations for a variety of
fabric types, including simple RMI remoting, EJB remoting, custom web service, JMS, Java
Spaces, shared memory grids (like Terracotta or Coherence), and grid execution fabrics
(like GridGain). Spring Batch does not contain implementations for any proprietary grid
or remoting fabrics.
Spring Batch does, however, provide a useful implementation of PartitionHandler
that
executes Step
instances locally in separate threads of execution, using the
TaskExecutor
strategy from Spring. The implementation is called
TaskExecutorPartitionHandler
.
The TaskExecutorPartitionHandler
can be configured explicitly within java configuration,
as shown in the following example:
@Bean
public Step step1Manager() {
return stepBuilderFactory.get("step1.manager")
.partitioner("step1", partitioner())
.partitionHandler(partitionHandler())
.build();
}
@Bean
public PartitionHandler partitionHandler() {
TaskExecutorPartitionHandler retVal = new TaskExecutorPartitionHandler();
retVal.setTaskExecutor(taskExecutor());
retVal.setStep(step1());
retVal.setGridSize(10);
return retVal;
}
The gridSize
attribute determines the number of separate step executions to create, so
it can be matched to the size of the thread pool in the TaskExecutor
. Alternatively, it
can be set to be larger than the number of threads available, which makes the blocks of
work smaller.
The TaskExecutorPartitionHandler
is useful for IO-intensive Step
instances, such as
copying large numbers of files or replicating filesystems into content management
systems. It can also be used for remote execution by providing a Step
implementation
that is a proxy for a remote invocation (such as using Spring Remoting).
. Partitioner
The Partitioner
has a simpler responsibility: to generate execution contexts as input
parameters for new step executions only (no need to worry about restarts). It has a
single method, as shown in the following interface definition:
public interface Partitioner {
Map<String, ExecutionContext> partition(int gridSize);
}
The return value from this method associates a unique name for each step execution (the
String
) with input parameters in the form of an ExecutionContext
. The names show up
later in the Batch metadata as the step name in the partitioned StepExecutions
. The
ExecutionContext
is just a bag of name-value pairs, so it might contain a range of
primary keys, line numbers, or the location of an input file. The remote Step
then
normally binds to the context input using #{…}
placeholders (late binding in step
scope), as illustrated in the next section.
The names of the step executions (the keys in the Map
returned by Partitioner
) need
to be unique amongst the step executions of a Job
but do not have any other specific
requirements. The easiest way to do this (and to make the names meaningful for users) is
to use a prefix+suffix naming convention, where the prefix is the name of the step that
is being executed (which itself is unique in the Job
), and the suffix is just a
counter. There is a SimplePartitioner
in the framework that uses this convention.
An optional interface called PartitionNameProvider
can be used to provide the partition
names separately from the partitions themselves. If a Partitioner
implements this
interface, then, on a restart, only the names are queried. If partitioning is expensive,
this can be a useful optimization. The names provided by the PartitionNameProvider
must
match those provided by the Partitioner
.
. Binding Input Data to Steps
It is very efficient for the steps that are executed by the PartitionHandler
to have
identical configuration and for their input parameters to be bound at runtime from the
ExecutionContext
. This is easy to do with the StepScope feature of Spring Batch
(covered in more detail in the section on Late Binding). For
example, if the Partitioner
creates ExecutionContext
instances with an attribute key
called fileName
, pointing to a different file (or directory) for each step invocation,
the Partitioner
output might resemble the content of the following table:
Step Execution Name (key) |
ExecutionContext (value) |
filecopy:partition0 |
fileName=/home/data/one |
filecopy:partition1 |
fileName=/home/data/two |
filecopy:partition2 |
fileName=/home/data/three |
Then the file name can be bound to a step using late binding to the execution context.
@Bean
public MultiResourceItemReader itemReader(
@Value("#{stepExecutionContext['fileName']}/*") Resource [] resources) {
return new MultiResourceItemReaderBuilder<String>()
.delegate(fileReader())
.name("itemReader")
.resources(resources)
.build();
}
Repeat
.1. RepeatTemplate
Batch processing is about repetitive actions, either as a simple optimization or as part
of a job. To strategize and generalize the repetition and to provide what amounts to an
iterator framework, Spring Batch has the RepeatOperations
interface. The
RepeatOperations
interface has the following definition:
public interface RepeatOperations {
RepeatStatus iterate(RepeatCallback callback) throws RepeatException;
}
The callback is an interface, shown in the following definition, that lets you insert some business logic to be repeated:
public interface RepeatCallback {
RepeatStatus doInIteration(RepeatContext context) throws Exception;
}
The callback is executed repeatedly until the implementation determines that the
iteration should end. The return value in these interfaces is an enumeration that can
either be RepeatStatus.CONTINUABLE
or RepeatStatus.FINISHED
. A RepeatStatus
enumeration conveys information to the caller of the repeat operations about whether
there is any more work to do. Generally speaking, implementations of RepeatOperations
should inspect the RepeatStatus
and use it as part of the decision to end the
iteration. Any callback that wishes to signal to the caller that there is no more work to
do can return RepeatStatus.FINISHED
.
The simplest general purpose implementation of RepeatOperations
is RepeatTemplate
, as
shown in the following example:
RepeatTemplate template = new RepeatTemplate();
template.setCompletionPolicy(new SimpleCompletionPolicy(2));
template.iterate(new RepeatCallback() {
public RepeatStatus doInIteration(RepeatContext context) {
// Do stuff in batch...
return RepeatStatus.CONTINUABLE;
}
});
In the preceding example, we return RepeatStatus.CONTINUABLE
, to show that there is
more work to do. The callback can also return RepeatStatus.FINISHED
, to signal to the
caller that there is no more work to do. Some iterations can be terminated by
considerations intrinsic to the work being done in the callback. Others are effectively
infinite loops as far as the callback is concerned and the completion decision is
delegated to an external policy, as in the case shown in the preceding example.
. RepeatContext
The method parameter for the RepeatCallback
is a RepeatContext
. Many callbacks ignore
the context. However, if necessary, it can be used as an attribute bag to store transient
data for the duration of the iteration. After the iterate
method returns, the context
no longer exists.
If there is a nested iteration in progress, a RepeatContext
has a parent context. The
parent context is occasionally useful for storing data that need to be shared between
calls to iterate
. This is the case, for instance, if you want to count the number of
occurrences of an event in the iteration and remember it across subsequent calls.
. RepeatStatus
RepeatStatus
is an enumeration used by Spring Batch to indicate whether processing has
finished. It has two possible RepeatStatus
values, described in the following table:
Value |
Description |
CONTINUABLE |
There is more work to do. |
FINISHED |
No more repetitions should take place. |
RepeatStatus
values can also be combined with a logical AND operation by using the
and()
method in RepeatStatus
. The effect of this is to do a logical AND on the
continuable flag. In other words, if either status is FINISHED
, then the result is
FINISHED
.
.2. Completion Policies
Inside a RepeatTemplate
, the termination of the loop in the iterate
method is
determined by a CompletionPolicy
, which is also a factory for the RepeatContext
. The
RepeatTemplate
has the responsibility to use the current policy to create a
RepeatContext
and pass that in to the RepeatCallback
at every stage in the iteration.
After a callback completes its doInIteration
, the RepeatTemplate
has to make a call
to the CompletionPolicy
to ask it to update its state (which will be stored in the
RepeatContext
). Then it asks the policy if the iteration is complete.
Spring Batch provides some simple general purpose implementations of CompletionPolicy
.
SimpleCompletionPolicy
allows execution up to a fixed number of times (with
RepeatStatus.FINISHED
forcing early completion at any time).
Users might need to implement their own completion policies for more complicated decisions. For example, a batch processing window that prevents batch jobs from executing once the online systems are in use would require a custom policy.
.3. Exception Handling
If there is an exception thrown inside a RepeatCallback
, the RepeatTemplate
consults
an ExceptionHandler
, which can decide whether or not to re-throw the exception.
The following listing shows the ExceptionHandler
interface definition:
public interface ExceptionHandler {
void handleException(RepeatContext context, Throwable throwable)
throws Throwable;
}
A common use case is to count the number of exceptions of a given type and fail when a
limit is reached. For this purpose, Spring Batch provides the
SimpleLimitExceptionHandler
and a slightly more flexible
RethrowOnThresholdExceptionHandler
. The SimpleLimitExceptionHandler
has a limit
property and an exception type that should be compared with the current exception. All
subclasses of the provided type are also counted. Exceptions of the given type are
ignored until the limit is reached, and then they are rethrown. Exceptions of other types
are always rethrown.
An important optional property of the SimpleLimitExceptionHandler
is the boolean flag
called useParent
. It is false
by default, so the limit is only accounted for in the
current RepeatContext
. When set to true
, the limit is kept across sibling contexts in
a nested iteration (such as a set of chunks inside a step).
.4. Listeners
Often, it is useful to be able to receive additional callbacks for cross-cutting concerns
across a number of different iterations. For this purpose, Spring Batch provides the
RepeatListener
interface. The RepeatTemplate
lets users register RepeatListener
implementations, and they are given callbacks with the RepeatContext
and RepeatStatus
where available during the iteration.
The RepeatListener
interface has the following definition:
public interface RepeatListener {
void before(RepeatContext context);
void after(RepeatContext context, RepeatStatus result);
void open(RepeatContext context);
void onError(RepeatContext context, Throwable e);
void close(RepeatContext context);
}
The open
and close
callbacks come before and after the entire iteration. before
,
after
, and onError
apply to the individual RepeatCallback
calls.
Note that, when there is more than one listener, they are in a list, so there is an
order. In this case, open
and before
are called in the same order while after
,
onError
, and close
are called in reverse order.
.5. Parallel Processing
Implementations of RepeatOperations
are not restricted to executing the callback
sequentially. It is quite important that some implementations are able to execute their
callbacks in parallel. To this end, Spring Batch provides the
TaskExecutorRepeatTemplate
, which uses the Spring TaskExecutor
strategy to run the
RepeatCallback
. The default is to use a SynchronousTaskExecutor
, which has the effect
of executing the whole iteration in the same thread (the same as a normal
RepeatTemplate
).
.6. Declarative Iteration
Sometimes there is some business processing that you know you want to repeat every time
it happens. The classic example of this is the optimization of a message pipeline. It is
more efficient to process a batch of messages, if they are arriving frequently, than to
bear the cost of a separate transaction for every message. Spring Batch provides an AOP
interceptor that wraps a method call in a RepeatOperations
object for just this
purpose. The RepeatOperationsInterceptor
executes the intercepted method and repeats
according to the CompletionPolicy
in the provided RepeatTemplate
.
The following example demonstrates using Java configuration to
repeat a service call to a method called processMessage
(for more detail on how to
configure AOP interceptors, see the Spring User Guide):
@Bean
public MyService myService() {
ProxyFactory factory = new ProxyFactory(RepeatOperations.class.getClassLoader());
factory.setInterfaces(MyService.class);
factory.setTarget(new MyService());
MyService service = (MyService) factory.getProxy();
JdkRegexpMethodPointcut pointcut = new JdkRegexpMethodPointcut();
pointcut.setPatterns(".*processMessage.*");
RepeatOperationsInterceptor interceptor = new RepeatOperationsInterceptor();
((Advised) service).addAdvisor(new DefaultPointcutAdvisor(pointcut, interceptor));
return service;
}
The preceding example uses a default RepeatTemplate
inside the interceptor. To change
the policies, listeners, and other details, you can inject an instance of
RepeatTemplate
into the interceptor.
If the intercepted method returns void
, then the interceptor always returns
RepeatStatus.CONTINUABLE
(so there is a danger of an infinite loop if the
CompletionPolicy
does not have a finite end point). Otherwise, it returns
RepeatStatus.CONTINUABLE
until the return value from the intercepted method is null
,
at which point it returns RepeatStatus.FINISHED
. Consequently, the business logic
inside the target method can signal that there is no more work to do by returning null
or by throwing an exception that is re-thrown by the ExceptionHandler
in the provided
RepeatTemplate
.
Retry
To make processing more robust and less prone to failure, it sometimes helps to
automatically retry a failed operation in case it might succeed on a subsequent attempt.
Errors that are susceptible to intermittent failure are often transient in nature.
Examples include remote calls to a web service that fails because of a network glitch or a
DeadlockLoserDataAccessException
in a database update.
.1. RetryTemplate
The retry functionality was pulled out of Spring Batch as of 2.2.0. It is now part of a new library, Spring Retry. |
To automate retry operations Spring Batch has the RetryOperations
strategy. The
following interface definition for RetryOperations
:
public interface RetryOperations {
<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback) throws E;
<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback, RecoveryCallback<T> recoveryCallback)
throws E;
<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback, RetryState retryState)
throws E, ExhaustedRetryException;
<T, E extends Throwable> T execute(RetryCallback<T, E> retryCallback, RecoveryCallback<T> recoveryCallback,
RetryState retryState) throws E;
}
The basic callback is a simple interface that lets you insert some business logic to be retried, as shown in the following interface definition:
public interface RetryCallback<T, E extends Throwable> {
T doWithRetry(RetryContext context) throws E;
}
The callback runs and, if it fails (by throwing an Exception
), it is retried until
either it is successful or the implementation aborts. There are a number of overloaded
execute
methods in the RetryOperations
interface. Those methods deal with various use
cases for recovery when all retry attempts are exhausted and deal with retry state, which
lets clients and implementations store information between calls (we cover this in more
detail later in the chapter).
The simplest general purpose implementation of RetryOperations
is RetryTemplate
. It
can be used as follows:
RetryTemplate template = new RetryTemplate();
TimeoutRetryPolicy policy = new TimeoutRetryPolicy();
policy.setTimeout(30000L);
template.setRetryPolicy(policy);
Foo result = template.execute(new RetryCallback<Foo>() {
public Foo doWithRetry(RetryContext context) {
// Do stuff that might fail, e.g. webservice operation
return result;
}
});
In the preceding example, we make a web service call and return the result to the user. If that call fails, then it is retried until a timeout is reached.
. RetryContext
The method parameter for the RetryCallback
is a RetryContext
. Many callbacks ignore
the context, but, if necessary, it can be used as an attribute bag to store data for the
duration of the iteration.
A RetryContext
has a parent context if there is a nested retry in progress in the same
thread. The parent context is occasionally useful for storing data that need to be shared
between calls to execute
.
. RecoveryCallback
When a retry is exhausted, the RetryOperations
can pass control to a different callback,
called the RecoveryCallback
. To use this feature, clients pass in the callbacks together
to the same method, as shown in the following example:
Foo foo = template.execute(new RetryCallback<Foo>() {
public Foo doWithRetry(RetryContext context) {
// business logic here
},
new RecoveryCallback<Foo>() {
Foo recover(RetryContext context) throws Exception {
// recover logic here
}
});
If the business logic does not succeed before the template decides to abort, then the client is given the chance to do some alternate processing through the recovery callback.
. Stateless Retry
In the simplest case, a retry is just a while loop. The RetryTemplate
can just keep
trying until it either succeeds or fails. The RetryContext
contains some state to
determine whether to retry or abort, but this state is on the stack and there is no need
to store it anywhere globally, so we call this stateless retry. The distinction between
stateless and stateful retry is contained in the implementation of the RetryPolicy
(the
RetryTemplate
can handle both). In a stateless retry, the retry callback is always
executed in the same thread it was on when it failed.
. Stateful Retry
Where the failure has caused a transactional resource to become invalid, there are some special considerations. This does not apply to a simple remote call because there is no transactional resource (usually), but it does sometimes apply to a database update, especially when using Hibernate. In this case it only makes sense to re-throw the exception that called the failure immediately, so that the transaction can roll back and we can start a new, valid transaction.
In cases involving transactions, a stateless retry is not good enough, because the
re-throw and roll back necessarily involve leaving the RetryOperations.execute()
method
and potentially losing the context that was on the stack. To avoid losing it we have to
introduce a storage strategy to lift it off the stack and put it (at a minimum) in heap
storage. For this purpose, Spring Batch provides a storage strategy called
RetryContextCache
, which can be injected into the RetryTemplate
. The default
implementation of the RetryContextCache
is in memory, using a simple Map
. Advanced
usage with multiple processes in a clustered environment might also consider implementing
the RetryContextCache
with a cluster cache of some sort (however, even in a clustered
environment, this might be overkill).
Part of the responsibility of the RetryOperations
is to recognize the failed operations
when they come back in a new execution (and usually wrapped in a new transaction). To
facilitate this, Spring Batch provides the RetryState
abstraction. This works in
conjunction with a special execute
methods in the RetryOperations
interface.
The way the failed operations are recognized is by identifying the state across multiple
invocations of the retry. To identify the state, the user can provide a RetryState
object that is responsible for returning a unique key identifying the item. The identifier
is used as a key in the RetryContextCache
interface.
Be very careful with the implementation of |
When the retry is exhausted, there is also the option to handle the failed item in a
different way, instead of calling the RetryCallback
(which is now presumed to be likely
to fail). Just like in the stateless case, this option is provided by the
RecoveryCallback
, which can be provided by passing it in to the execute
method of
RetryOperations
.
The decision to retry or not is actually delegated to a regular RetryPolicy
, so the
usual concerns about limits and timeouts can be injected there (described later in this
chapter).
.2. Retry Policies
Inside a RetryTemplate
, the decision to retry or fail in the execute
method is
determined by a RetryPolicy
, which is also a factory for the RetryContext
. The
RetryTemplate
has the responsibility to use the current policy to create a
RetryContext
and pass that in to the RetryCallback
at every attempt. After a callback
fails, the RetryTemplate
has to make a call to the RetryPolicy
to ask it to update its
state (which is stored in the RetryContext
) and then asks the policy if another attempt
can be made. If another attempt cannot be made (such as when a limit is reached or a
timeout is detected) then the policy is also responsible for handling the exhausted state.
Simple implementations throw RetryExhaustedException
, which causes any enclosing
transaction to be rolled back. More sophisticated implementations might attempt to take
some recovery action, in which case the transaction can remain intact.
Failures are inherently either retryable or not. If the same exception is always going to be thrown from the business logic, it does no good to retry it. So do not retry on all exception types. Rather, try to focus on only those exceptions that you expect to be retryable. It is not usually harmful to the business logic to retry more aggressively, but it is wasteful, because, if a failure is deterministic, you spend time retrying something that you know in advance is fatal. |
Spring Batch provides some simple general purpose implementations of stateless
RetryPolicy
, such as SimpleRetryPolicy
and TimeoutRetryPolicy
(used in the preceding example).
The SimpleRetryPolicy
allows a retry on any of a named list of exception types, up to a
fixed number of times. It also has a list of "fatal" exceptions that should never be
retried, and this list overrides the retryable list so that it can be used to give finer
control over the retry behavior, as shown in the following example:
SimpleRetryPolicy policy = new SimpleRetryPolicy();
// Set the max retry attempts
policy.setMaxAttempts(5);
// Retry on all exceptions (this is the default)
policy.setRetryableExceptions(new Class[] {Exception.class});
// ... but never retry IllegalStateException
policy.setFatalExceptions(new Class[] {IllegalStateException.class});
// Use the policy...
RetryTemplate template = new RetryTemplate();
template.setRetryPolicy(policy);
template.execute(new RetryCallback<Foo>() {
public Foo doWithRetry(RetryContext context) {
// business logic here
}
});
There is also a more flexible implementation called ExceptionClassifierRetryPolicy
,
which lets the user configure different retry behavior for an arbitrary set of exception
types though the ExceptionClassifier
abstraction. The policy works by calling on the
classifier to convert an exception into a delegate RetryPolicy
. For example, one
exception type can be retried more times before failure than another by mapping it to a
different policy.
Users might need to implement their own retry policies for more customized decisions. For instance, a custom retry policy makes sense when there is a well-known, solution-specific classification of exceptions into retryable and not retryable.
.3. Backoff Policies
When retrying after a transient failure, it often helps to wait a bit before trying again,
because usually the failure is caused by some problem that can only be resolved by
waiting. If a RetryCallback
fails, the RetryTemplate
can pause execution according to
the BackoffPolicy
.
The following code shows the interface definition for the BackOffPolicy
interface:
public interface BackoffPolicy {
BackOffContext start(RetryContext context);
void backOff(BackOffContext backOffContext)
throws BackOffInterruptedException;
}
A BackoffPolicy
is free to implement the backOff in any way it chooses. The policies
provided by Spring Batch out of the box all use Object.wait()
. A common use case is to
backoff with an exponentially increasing wait period, to avoid two retries getting into
lock step and both failing (this is a lesson learned from ethernet). For this purpose,
Spring Batch provides the ExponentialBackoffPolicy
.
.4. Listeners
Often, it is useful to be able to receive additional callbacks for cross cutting concerns
across a number of different retries. For this purpose, Spring Batch provides the
RetryListener
interface. The RetryTemplate
lets users register RetryListeners
, and
they are given callbacks with RetryContext
and Throwable
where available during the
iteration.
The following code shows the interface definition for RetryListener
:
public interface RetryListener {
<T, E extends Throwable> boolean open(RetryContext context, RetryCallback<T, E> callback);
<T, E extends Throwable> void onError(RetryContext context, RetryCallback<T, E> callback, Throwable throwable);
<T, E extends Throwable> void close(RetryContext context, RetryCallback<T, E> callback, Throwable throwable);
}
The open
and close
callbacks come before and after the entire retry in the simplest
case, and onError
applies to the individual RetryCallback
calls. The close
method
might also receive a Throwable
. If there has been an error, it is the last one thrown by
the RetryCallback
.
Note that, when there is more than one listener, they are in a list, so there is an order.
In this case, open
is called in the same order while onError
and close
are called in
reverse order.
.5. Declarative Retry
Sometimes, there is some business processing that you know you want to retry every time it
happens. The classic example of this is the remote service call. Spring Batch provides an
AOP interceptor that wraps a method call in a RetryOperations
implementation for just
this purpose. The RetryOperationsInterceptor
executes the intercepted method and retries
on failure according to the RetryPolicy
in the provided RepeatTemplate
.
The following example shows a declarative retry that uses java configuration to retry a
service call to a method called remoteCall
(for more detail on how to configure AOP
interceptors, see the Spring User Guide):
@Bean
public MyService myService() {
ProxyFactory factory = new ProxyFactory(RepeatOperations.class.getClassLoader());
factory.setInterfaces(MyService.class);
factory.setTarget(new MyService());
MyService service = (MyService) factory.getProxy();
JdkRegexpMethodPointcut pointcut = new JdkRegexpMethodPointcut();
pointcut.setPatterns(".*remoteCall.*");
RetryOperationsInterceptor interceptor = new RetryOperationsInterceptor();
((Advised) service).addAdvisor(new DefaultPointcutAdvisor(pointcut, interceptor));
return service;
}
The preceding example uses a default RetryTemplate
inside the interceptor. To change the
policies or listeners, you can inject an instance of RetryTemplate
into the interceptor.
Unit Testing
As with other application styles, it is extremely important to unit test any code written as part of a batch job. The Spring core documentation covers how to unit and integration test with Spring in great detail, so it is not be repeated here. It is important, however, to think about how to 'end to end' test a batch job, which is what this chapter covers. The spring-batch-test project includes classes that facilitate this end-to-end test approach.
Common Batch Patterns
Some batch jobs can be assembled purely from off-the-shelf components in Spring Batch.
For instance, the ItemReader
and ItemWriter
implementations can be configured to
cover a wide range of scenarios. However, for the majority of cases, custom code must be
written. The main API entry points for application developers are the Tasklet
, the
ItemReader
, the ItemWriter
, and the various listener interfaces. Most simple batch
jobs can use off-the-shelf input from a Spring Batch ItemReader
, but it is often the
case that there are custom concerns in the processing and writing that require developers
to implement an ItemWriter
or ItemProcessor
.
In this chapter, we provide a few examples of common patterns in custom business logic.
These examples primarily feature the listener interfaces. It should be noted that an
ItemReader
or ItemWriter
can implement a listener interface as well, if appropriate.
.1. Logging Item Processing and Failures
A common use case is the need for special handling of errors in a step, item by item,
perhaps logging to a special channel or inserting a record into a database. A
chunk-oriented Step
(created from the step factory beans) lets users implement this use
case with a simple ItemReadListener
for errors on read
and an ItemWriteListener
for
errors on write
. The following code snippet illustrates a listener that logs both read
and write failures:
public class ItemFailureLoggerListener extends ItemListenerSupport {
private static Log logger = LogFactory.getLog("item.error");
public void onReadError(Exception ex) {
logger.error("Encountered error on read", e);
}
public void onWriteError(Exception ex, List<? extends Object> items) {
logger.error("Encountered error on write", ex);
}
}
Having implemented this listener, it must be registered with a step.
The following example shows how to register a listener with a step Java:
@Bean
public Step simpleStep() {
return this.stepBuilderFactory.get("simpleStep")
...
.listener(new ItemFailureLoggerListener())
.build();
}
if your listener does anything in an onError() method, it must be inside
a transaction that is going to be rolled back. If you need to use a transactional
resource, such as a database, inside an onError() method, consider adding a declarative
transaction to that method (see Spring Core Reference Guide for details), and giving its
propagation attribute a value of REQUIRES_NEW .
|
.2. Stopping a Job Manually for Business Reasons
Spring Batch provides a stop()
method through the JobOperator
interface, but this is
really for use by the operator rather than the application programmer. Sometimes, it is
more convenient or makes more sense to stop a job execution from within the business
logic.
The simplest thing to do is to throw a RuntimeException
(one that is neither retried
indefinitely nor skipped). For example, a custom exception type could be used, as shown
in the following example:
public class PoisonPillItemProcessor<T> implements ItemProcessor<T, T> {
@Override
public T process(T item) throws Exception {
if (isPoisonPill(item)) {
throw new PoisonPillException("Poison pill detected: " + item);
}
return item;
}
}
Another simple way to stop a step from executing is to return null
from the
ItemReader
, as shown in the following example:
public class EarlyCompletionItemReader implements ItemReader<T> {
private ItemReader<T> delegate;
public void setDelegate(ItemReader<T> delegate) { ... }
public T read() throws Exception {
T item = delegate.read();
if (isEndItem(item)) {
return null; // end the step here
}
return item;
}
}
The previous example actually relies on the fact that there is a default implementation
of the CompletionPolicy
strategy that signals a complete batch when the item to be
processed is null
. A more sophisticated completion policy could be implemented and
injected into the Step
through the SimpleStepFactoryBean
.
The following example shows how to inject a completion policy into a step in Java:
@Bean
public Step simpleStep() {
return this.stepBuilderFactory.get("simpleStep")
.<String, String>chunk(new SpecialCompletionPolicy())
.reader(reader())
.writer(writer())
.build();
}
An alternative is to set a flag in the StepExecution
, which is checked by the Step
implementations in the framework in between item processing. To implement this
alternative, we need access to the current StepExecution
, and this can be achieved by
implementing a StepListener
and registering it with the Step
. The following example
shows a listener that sets the flag:
public class CustomItemWriter extends ItemListenerSupport implements StepListener {
private StepExecution stepExecution;
public void beforeStep(StepExecution stepExecution) {
this.stepExecution = stepExecution;
}
public void afterRead(Object item) {
if (isPoisonPill(item)) {
stepExecution.setTerminateOnly();
}
}
}
When the flag is set, the default behavior is for the step to throw a
JobInterruptedException
. This behavior can be controlled through the
StepInterruptionPolicy
. However, the only choice is to throw or not throw an exception,
so this is always an abnormal ending to a job.
.3. Adding a Footer Record
Often, when writing to flat files, a “footer” record must be appended to the end of the
file, after all processing has be completed. This can be achieved using the
FlatFileFooterCallback
interface provided by Spring Batch. The FlatFileFooterCallback
(and its counterpart, the FlatFileHeaderCallback
) are optional properties of the
FlatFileItemWriter
and can be added to an item writer.
The following example shows how to use the FlatFileHeaderCallback
and the
FlatFileFooterCallback
in Java:
@Bean
public FlatFileItemWriter<String> itemWriter(Resource outputResource) {
return new FlatFileItemWriterBuilder<String>()
.name("itemWriter")
.resource(outputResource)
.lineAggregator(lineAggregator())
.headerCallback(headerCallback())
.footerCallback(footerCallback())
.build();
}
The footer callback interface has just one method that is called when the footer must be written, as shown in the following interface definition:
public interface FlatFileFooterCallback {
void writeFooter(Writer writer) throws IOException;
}
. Writing a Summary Footer
A common requirement involving footer records is to aggregate information during the output process and to append this information to the end of the file. This footer often serves as a summarization of the file or provides a checksum.
For example, if a batch job is writing Trade
records to a flat file, and there is a
requirement that the total amount from all the Trades
is placed in a footer, then the
following ItemWriter
implementation can be used:
public class TradeItemWriter implements ItemWriter<Trade>,
FlatFileFooterCallback {
private ItemWriter<Trade> delegate;
private BigDecimal totalAmount = BigDecimal.ZERO;
public void write(List<? extends Trade> items) throws Exception {
BigDecimal chunkTotal = BigDecimal.ZERO;
for (Trade trade : items) {
chunkTotal = chunkTotal.add(trade.getAmount());
}
delegate.write(items);
// After successfully writing all items
totalAmount = totalAmount.add(chunkTotal);
}
public void writeFooter(Writer writer) throws IOException {
writer.write("Total Amount Processed: " + totalAmount);
}
public void setDelegate(ItemWriter delegate) {...}
}
This TradeItemWriter
stores a totalAmount
value that is increased with the amount
from each Trade
item written. After the last Trade
is processed, the framework calls
writeFooter
, which puts the totalAmount
into the file. Note that the write
method
makes use of a temporary variable, chunkTotal
, that stores the total of the
Trade
amounts in the chunk. This is done to ensure that, if a skip occurs in the
write
method, the totalAmount
is left unchanged. It is only at the end of the write
method, once we are guaranteed that no exceptions are thrown, that we update the
totalAmount
.
In order for the writeFooter
method to be called, the TradeItemWriter
(which
implements FlatFileFooterCallback
) must be wired into the FlatFileItemWriter
as the
footerCallback
.
The following example shows how to wire the TradeItemWriter
in Java:
@Bean
public TradeItemWriter tradeItemWriter() {
TradeItemWriter itemWriter = new TradeItemWriter();
itemWriter.setDelegate(flatFileItemWriter(null));
return itemWriter;
}
@Bean
public FlatFileItemWriter<String> flatFileItemWriter(Resource outputResource) {
return new FlatFileItemWriterBuilder<String>()
.name("itemWriter")
.resource(outputResource)
.lineAggregator(lineAggregator())
.footerCallback(tradeItemWriter())
.build();
}
The way that the TradeItemWriter
has been written so far functions correctly only if
the Step
is not restartable. This is because the class is stateful (since it stores the
totalAmount
), but the totalAmount
is not persisted to the database. Therefore, it
cannot be retrieved in the event of a restart. In order to make this class restartable,
the ItemStream
interface should be implemented along with the methods open
and
update
, as shown in the following example:
public void open(ExecutionContext executionContext) {
if (executionContext.containsKey("total.amount") {
totalAmount = (BigDecimal) executionContext.get("total.amount");
}
}
public void update(ExecutionContext executionContext) {
executionContext.put("total.amount", totalAmount);
}
The update method stores the most current version of totalAmount
to the
ExecutionContext
just before that object is persisted to the database. The open method
retrieves any existing totalAmount
from the ExecutionContext
and uses it as the
starting point for processing, allowing the TradeItemWriter
to pick up on restart where
it left off the previous time the Step
was run.
.4. Driving Query Based ItemReaders
In the chapter on readers and writers, database input using paging was discussed. Many database vendors, such as DB2, have extremely pessimistic locking strategies that can cause issues if the table being read also needs to be used by other portions of the online application. Furthermore, opening cursors over extremely large datasets can cause issues on databases from certain vendors. Therefore, many projects prefer to use a 'Driving Query' approach to reading in data. This approach works by iterating over keys, rather than the entire object that needs to be returned, as the following image illustrates:
As you can see, the example shown in the preceding image uses the same 'FOO' table as was
used in the cursor-based example. However, rather than selecting the entire row, only the
IDs were selected in the SQL statement. So, rather than a FOO
object being returned
from read
, an Integer
is returned. This number can then be used to query for the
'details', which is a complete Foo
object, as shown in the following image:
An ItemProcessor
should be used to transform the key obtained from the driving query
into a full Foo
object. An existing DAO can be used to query for the full object based
on the key.
.5. Multi-Line Records
While it is usually the case with flat files that each record is confined to a single line, it is common that a file might have records spanning multiple lines with multiple formats. The following excerpt from a file shows an example of such an arrangement:
HEA;0013100345;2007-02-15 NCU;Smith;Peter;;T;20014539;F BAD;;Oak Street 31/A;;Small Town;00235;IL;US FOT;2;2;267.34
Everything between the line starting with 'HEA' and the line starting with 'FOT' is considered one record. There are a few considerations that must be made in order to handle this situation correctly:
-
Instead of reading one record at a time, the
ItemReader
must read every line of the multi-line record as a group, so that it can be passed to theItemWriter
intact. -
Each line type may need to be tokenized differently.
Because a single record spans multiple lines and because we may not know how many lines
there are, the ItemReader
must be careful to always read an entire record. In order to
do this, a custom ItemReader
should be implemented as a wrapper for the
FlatFileItemReader
.
The following example shows how to implement a custom ItemReader
in Java:
@Bean
public MultiLineTradeItemReader itemReader() {
MultiLineTradeItemReader itemReader = new MultiLineTradeItemReader();
itemReader.setDelegate(flatFileItemReader());
return itemReader;
}
@Bean
public FlatFileItemReader flatFileItemReader() {
FlatFileItemReader<Trade> reader = new FlatFileItemReaderBuilder<>()
.name("flatFileItemReader")
.resource(new ClassPathResource("data/iosample/input/multiLine.txt"))
.lineTokenizer(orderFileTokenizer())
.fieldSetMapper(orderFieldSetMapper())
.build();
return reader;
}
To ensure that each line is tokenized properly, which is especially important for
fixed-length input, the PatternMatchingCompositeLineTokenizer
can be used on the
delegate FlatFileItemReader
. See
FlatFileItemReader
in the Readers and
Writers chapter for more details. The delegate reader then uses a
PassThroughFieldSetMapper
to deliver a FieldSet
for each line back to the wrapping
ItemReader
.
The following example shows how to ensure that each line is properly tokenized in Java:
@Bean
public PatternMatchingCompositeLineTokenizer orderFileTokenizer() {
PatternMatchingCompositeLineTokenizer tokenizer =
new PatternMatchingCompositeLineTokenizer();
Map<String, LineTokenizer> tokenizers = new HashMap<>(4);
tokenizers.put("HEA*", headerRecordTokenizer());
tokenizers.put("FOT*", footerRecordTokenizer());
tokenizers.put("NCU*", customerLineTokenizer());
tokenizers.put("BAD*", billingAddressLineTokenizer());
tokenizer.setTokenizers(tokenizers);
return tokenizer;
}
This wrapper has to be able to recognize the end of a record so that it can continually
call read()
on its delegate until the end is reached. For each line that is read, the
wrapper should build up the item to be returned. Once the footer is reached, the item can
be returned for delivery to the ItemProcessor
and ItemWriter
, as shown in the
following example:
private FlatFileItemReader<FieldSet> delegate;
public Trade read() throws Exception {
Trade t = null;
for (FieldSet line = null; (line = this.delegate.read()) != null;) {
String prefix = line.readString(0);
if (prefix.equals("HEA")) {
t = new Trade(); // Record must start with header
}
else if (prefix.equals("NCU")) {
Assert.notNull(t, "No header was found.");
t.setLast(line.readString(1));
t.setFirst(line.readString(2));
...
}
else if (prefix.equals("BAD")) {
Assert.notNull(t, "No header was found.");
t.setCity(line.readString(4));
t.setState(line.readString(6));
...
}
else if (prefix.equals("FOT")) {
return t; // Record must end with footer
}
}
Assert.isNull(t, "No 'END' was found.");
return null;
}
.6. Executing System Commands
Many batch jobs require that an external command be called from within the batch job. Such a process could be kicked off separately by the scheduler, but the advantage of common metadata about the run would be lost. Furthermore, a multi-step job would also need to be split up into multiple jobs as well.
Because the need is so common, Spring Batch provides a Tasklet
implementation for
calling system commands.
The following example shows how to call an external command in Java:
@Bean
public SystemCommandTasklet tasklet() {
SystemCommandTasklet tasklet = new SystemCommandTasklet();
tasklet.setCommand("echo hello");
tasklet.setTimeout(5000);
return tasklet;
}
.7. Handling Step Completion When No Input is Found
In many batch scenarios, finding no rows in a database or file to process is not
exceptional. The Step
is simply considered to have found no work and completes with 0
items read. All of the ItemReader
implementations provided out of the box in Spring
Batch default to this approach. This can lead to some confusion if nothing is written out
even when input is present (which usually happens if a file was misnamed or some similar
issue arises). For this reason, the metadata itself should be inspected to determine how
much work the framework found to be processed. However, what if finding no input is
considered exceptional? In this case, programmatically checking the metadata for no items
processed and causing failure is the best solution. Because this is a common use case,
Spring Batch provides a listener with exactly this functionality, as shown in
the class definition for NoWorkFoundStepExecutionListener
:
public class NoWorkFoundStepExecutionListener extends StepExecutionListenerSupport {
public ExitStatus afterStep(StepExecution stepExecution) {
if (stepExecution.getReadCount() == 0) {
return ExitStatus.FAILED;
}
return null;
}
}
The preceding StepExecutionListener
inspects the readCount
property of the
StepExecution
during the 'afterStep' phase to determine if no items were read. If that
is the case, an exit code FAILED
is returned, indicating that the Step
should fail.
Otherwise, null
is returned, which does not affect the status of the Step
.
.8. Passing Data to Future Steps
It is often useful to pass information from one step to another. This can be done through
the ExecutionContext
. The catch is that there are two ExecutionContexts
: one at the
Step
level and one at the Job
level. The Step
ExecutionContext
remains only as
long as the step, while the Job
ExecutionContext
remains through the whole Job
. On
the other hand, the Step
ExecutionContext
is updated every time the Step
commits a
chunk, while the Job
ExecutionContext
is updated only at the end of each Step
.
The consequence of this separation is that all data must be placed in the Step
ExecutionContext
while the Step
is executing. Doing so ensures that the data is
stored properly while the Step
runs. If data is stored to the Job
ExecutionContext
,
then it is not persisted during Step
execution. If the Step
fails, that data is lost.
public class SavingItemWriter implements ItemWriter<Object> {
private StepExecution stepExecution;
public void write(List<? extends Object> items) throws Exception {
// ...
ExecutionContext stepContext = this.stepExecution.getExecutionContext();
stepContext.put("someKey", someObject);
}
@BeforeStep
public void saveStepExecution(StepExecution stepExecution) {
this.stepExecution = stepExecution;
}
}
To make the data available to future Steps
, it must be “promoted” to the Job
ExecutionContext
after the step has finished. Spring Batch provides the
ExecutionContextPromotionListener
for this purpose. The listener must be configured
with the keys related to the data in the ExecutionContext
that must be promoted. It can
also, optionally, be configured with a list of exit code patterns for which the promotion
should occur (COMPLETED
is the default). As with all listeners, it must be registered
on the Step
.
@Bean
public Job job1() {
return this.jobBuilderFactory.get("job1")
.start(step1())
.next(step1())
.build();
}
@Bean
public Step step1() {
return this.stepBuilderFactory.get("step1")
.<String, String>chunk(10)
.reader(reader())
.writer(savingWriter())
.listener(promotionListener())
.build();
}
@Bean
public ExecutionContextPromotionListener promotionListener() {
ExecutionContextPromotionListener listener = new ExecutionContextPromotionListener();
listener.setKeys(new String[] {"someKey"});
return listener;
}
Finally, the saved values must be retrieved from the Job
ExecutionContext
, as shown
in the following example:
public class RetrievingItemWriter implements ItemWriter<Object> {
private Object someObject;
public void write(List<? extends Object> items) throws Exception {
// ...
}
@BeforeStep
public void retrieveInterstepData(StepExecution stepExecution) {
JobExecution jobExecution = stepExecution.getJobExecution();
ExecutionContext jobContext = jobExecution.getExecutionContext();
this.someObject = jobContext.get("someKey");
}
}
JSR-352 Support
As of Spring Batch 3.0 support for JSR-352 has been fully implemented. This section is not a replacement for the spec itself and instead, intends to explain how the JSR-352 specific concepts apply to Spring Batch. Additional information on JSR-352 can be found via the JCP here: https://jcp.org/en/jsr/detail?id=352
.1. General Notes about Spring Batch and JSR-352
Spring Batch and JSR-352 are structurally the same. They both have jobs that are made up of steps. They
both have readers, processors, writers, and listeners. However, their interactions are subtly different.
For example, the org.springframework.batch.core.SkipListener#onSkipInWrite(S item, Throwable t)
within Spring Batch receives two parameters: the item that was skipped and the Exception that caused the
skip. The JSR-352 version of the same method
(javax.batch.api.chunk.listener.SkipWriteListener#onSkipWriteItem(List<Object> items, Exception ex)
)
also receives two parameters. However the first one is a List
of all the items
within the current chunk with the second being the Exception
that caused the skip.
Because of these differences, it is important to note that there are two paths to execute a job within
Spring Batch: either a traditional Spring Batch job or a JSR-352 based job. While the use of Spring Batch
artifacts (readers, writers, etc) will work within a job configured with JSR-352’s JSL and executed with the
JsrJobOperator
, they will behave according to the rules of JSR-352. It is also
important to note that batch artifacts that have been developed against the JSR-352 interfaces will not work
within a traditional Spring Batch job.
.2. Setup
. Application Contexts
All JSR-352 based jobs within Spring Batch consist of two application contexts. A parent context, that
contains beans related to the infrastructure of Spring Batch such as the JobRepository
,
PlatformTransactionManager
, etc and a child context that consists of the configuration
of the job to be run. The parent context is defined via the jsrBaseContext.xml
provided
by the framework. This context may be overridden by setting the JSR-352-BASE-CONTEXT
system
property.
The base context is not processed by the JSR-352 processors for things like property injection so no components requiring that additional processing should be configured there. |
. Launching a JSR-352 based job
JSR-352 requires a very simple path to executing a batch job. The following code is all that is needed to execute your first batch job:
JobOperator operator = BatchRuntime.getJobOperator();
jobOperator.start("myJob", new Properties());
While that is convenient for developers, the devil is in the details. Spring Batch bootstraps a bit of
infrastructure behind the scenes that a developer may want to override. The following is bootstrapped the
first time BatchRuntime.getJobOperator()
is called:
Bean Name |
Default Configuration |
Notes |
dataSource |
Apache DBCP BasicDataSource with configured values. |
By default, HSQLDB is bootstrapped. |
|
|
References the dataSource bean defined above. |
A Datasource initializer |
This is configured to execute the scripts configured via the
|
|
jobRepository |
A JDBC based |
This |
jobLauncher |
|
Used to launch jobs. |
batchJobOperator |
|
The |
jobExplorer |
|
Used to address lookup functionality provided by the |
jobParametersConverter |
|
JSR-352 specific implementation of the |
jobRegistry |
|
Used by the |
placeholderProperties |
|
Loads the properties file |
None of the above beans are optional for executing JSR-352 based jobs. All may be overridden to provide customized functionality as needed. |
.3. Dependency Injection
JSR-352 is based heavily on the Spring Batch programming model. As such, while not explicitly requiring a formal dependency injection implementation, DI of some kind implied. Spring Batch supports all three methods for loading batch artifacts defined by JSR-352:
- Implementation Specific Loader: Spring Batch is built upon Spring and so supports Spring dependency injection within JSR-352 batch jobs.
- Archive Loader: JSR-352 defines the existing of a
batch.xml
file that provides mappings between a logical name and a class name. This file must be found within the/META-INF/
directory if it is used. - Thread Context Class Loader: JSR-352 allows configurations to specify batch artifact implementations in their JSL by providing the fully qualified class name inline. Spring Batch supports this as well in JSR-352 configured jobs.
To use Spring dependency injection within a JSR-352 based batch job consists of
configuring batch artifacts using a Spring application context as beans. Once the beans
have been defined, a job can refer to them as it would any bean defined within the
batch.xml
file.
The following example shows how to use Spring dependency injection within a JSR-352 based batch job in Java:
@Configuration
public class BatchConfiguration {
@Bean
public Batchlet fooBatchlet() {
FooBatchlet batchlet = new FooBatchlet();
batchlet.setProp("bar");
return batchlet;
}
}
<?xml version="1.0" encoding="UTF-8"?>
<job id="fooJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="step1" >
<batchlet ref="fooBatchlet" />
</step>
</job>
The assembly of Spring contexts (imports, etc) works with JSR-352 jobs just as it would with any other Spring based application. The only difference with a JSR-352 based job is that the entry point for the context definition will be the job definition found in /META-INF/batch-jobs/.
To use the thread context class loader approach, all you need to do is provide the fully qualified class
name as the ref. It is important to note that when using this approach or the batch.xml
approach, the class
referenced requires a no argument constructor which will be used to create the bean.
<?xml version="1.0" encoding="UTF-8"?>
<job id="fooJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="step1" >
<batchlet ref="io.spring.FooBatchlet" />
</step>
</job>
.4. Batch Properties
. Property Support
JSR-352 allows for properties to be defined at the Job, Step and batch artifact level by way of configuration in the JSL. Batch properties are configured at each level in the following way:
<properties>
<property name="propertyName1" value="propertyValue1"/>
<property name="propertyName2" value="propertyValue2"/>
</properties>
Properties
may be configured on any batch artifact.
. @BatchProperty annotation
Properties
are referenced in batch artifacts by annotating class fields with the
@BatchProperty
and @Inject
annotations (both annotations
are required by the spec). As defined by JSR-352, fields for properties must be String typed. Any type
conversion is up to the implementing developer to perform.
An javax.batch.api.chunk.ItemReader
artifact could be configured with a
properties block such as the one described above and accessed as such:
public class MyItemReader extends AbstractItemReader {
@Inject
@BatchProperty
private String propertyName1;
...
}
The value of the field "propertyName1" will be "propertyValue1"
. Property Substitution
Property substitution is provided by way of operators and simple conditional expressions. The general
usage is #{operator['key']}
.
Supported operators:
jobParameters
: access job parameter values that the job was started/restarted with.jobProperties
: access properties configured at the job level of the JSL.systemProperties
: access named system properties.partitionPlan
: access named property from the partition plan of a partitioned step.
#{jobParameters['unresolving.prop']}?:#{systemProperties['file.separator']}
The left hand side of the assignment is the expected value, the right hand side is the default value. In the preceding example, the result will resolve to a value of the system property file.separator as #{jobParameters['unresolving.prop']} is assumed to not be resolvable. If neither expressions can be resolved, an empty String will be returned. Multiple conditions can be used, which are separated by a ';'.
.5. Processing Models
JSR-352 provides the same two basic processing models that Spring Batch does:
-
Item based processing - Using an
javax.batch.api.chunk.ItemReader
, an optionaljavax.batch.api.chunk.ItemProcessor
, and anjavax.batch.api.chunk.ItemWriter
. - Task based processing - Using a
javax.batch.api.Batchlet
implementation. This processing model is the same as theorg.springframework.batch.core.step.tasklet.Tasklet
based processing currently available.
. Item based processing
Item based processing in this context is a chunk size being set by the number of items read by an
ItemReader
. To configure a step this way, specify the
item-count
(which defaults to 10) and optionally configure the
checkpoint-policy
as item (this is the default).
...
<step id="step1">
<chunk checkpoint-policy="item" item-count="3">
<reader ref="fooReader"/>
<processor ref="fooProcessor"/>
<writer ref="fooWriter"/>
</chunk>
</step>
...
If item-based checkpointing is chosen, an additional attribute time-limit
is supported.
This sets a time limit for how long the number of items specified has to be processed. If
the timeout is reached, the chunk will complete with however many items have been read by
then regardless of what the item-count
is configured to be.
. Custom checkpointing
JSR-352 calls the process around the commit interval within a step "checkpointing".
Item-based checkpointing is one approach as mentioned above. However, this is not robust
enough in many cases. Because of this, the spec allows for the implementation of a custom
checkpointing algorithm by implementing the javax.batch.api.chunk.CheckpointAlgorithm
interface. This functionality is functionally the same as Spring Batch’s custom completion
policy. To use an implementation of CheckpointAlgorithm
, configure your step with the
custom checkpoint-policy
as shown below where fooCheckpointer
refers to an
implementation of CheckpointAlgorithm
.
...
<step id="step1">
<chunk checkpoint-policy="custom">
<checkpoint-algorithm ref="fooCheckpointer"/>
<reader ref="fooReader"/>
<processor ref="fooProcessor"/>
<writer ref="fooWriter"/>
</chunk>
</step>
...
.6. Running a job
The entrance to executing a JSR-352 based job is through the
javax.batch.operations.JobOperator
. Spring Batch provides its own implementation of
this interface (org.springframework.batch.core.jsr.launch.JsrJobOperator
). This
implementation is loaded via the javax.batch.runtime.BatchRuntime
. Launching a
JSR-352 based batch job is implemented as follows:
JobOperator jobOperator = BatchRuntime.getJobOperator();
long jobExecutionId = jobOperator.start("fooJob", new Properties());
The above code does the following:
-
Bootstraps a base
ApplicationContext
: In order to provide batch functionality, the framework needs some infrastructure bootstrapped. This occurs once per JVM. The components that are bootstrapped are similar to those provided by@EnableBatchProcessing
. Specific details can be found in the javadoc for theJsrJobOperator
. - Loads an
ApplicationContext
for the job requested: In the example above, the framework looks in /META-INF/batch-jobs for a file named fooJob.xml and load a context that is a child of the shared context mentioned previously. - Launch the job: The job defined within the context will be executed asynchronously.
The
JobExecution’s
ID will be returned.
All JSR-352 based batch jobs are executed asynchronously. |
When JobOperator#start
is called using SimpleJobOperator
, Spring Batch determines if
the call is an initial run or a retry of a previously executed run. Using the JSR-352
based JobOperator#start(String jobXMLName, Properties jobParameters)
, the framework
will always create a new JobInstance (JSR-352 job parameters are non-identifying). In order to
restart a job, a call to
JobOperator#restart(long executionId, Properties restartParameters)
is required.
.7. Contexts
JSR-352 defines two context objects that are used to interact with the meta-data of a job or step from
within a batch artifact: javax.batch.runtime.context.JobContext
and
javax.batch.runtime.context.StepContext
. Both of these are available in any step
level artifact (Batchlet
, ItemReader
, etc) with the
JobContext
being available to job level artifacts as well
(JobListener
for example).
To obtain a reference to the JobContext
or StepContext
within the current scope, simply use the @Inject
annotation:
@Inject
JobContext jobContext;
@Autowire for JSR-352 contexts
Using Spring’s @Autowire is not supported for the injection of these contexts. |
In Spring Batch, the JobContext
and StepContext
wrap their
corresponding execution objects (JobExecution
and
StepExecution
respectively). Data stored through
StepContext#setPersistentUserData(Serializable data)
is stored in the
Spring Batch StepExecution#executionContext
.
.8. Step Flow
Within a JSR-352 based job, the flow of steps works similarly as it does within Spring Batch. However, there are a few subtle differences:
-
Decision’s are steps - In a regular Spring Batch job, a decision is a state that does not
have an independent
StepExecution
or any of the rights and responsibilities that go along with being a full step.. However, with JSR-352, a decision is a step just like any other and will behave just as any other steps (transactionality, it gets aStepExecution
, etc). This means that they are treated the same as any other step on restarts as well. next
attribute and step transitions - In a regular job, these are allowed to appear together in the same step. JSR-352 allows them to both be used in the same step with the next attribute taking precedence in evaluation.- Transition element ordering - In a standard Spring Batch job, transition elements are sorted from most specific to least specific and evaluated in that order. JSR-352 jobs evaluate transition elements in the order they are specified in the XML.
.9. Scaling a JSR-352 batch job
Traditional Spring Batch jobs have four ways of scaling (the last two capable of being executed across multiple JVMs):
- Split - Running multiple steps in parallel.
- Multiple threads - Executing a single step via multiple threads.
- Partitioning - Dividing the data up for parallel processing (manager/worker).
- Remote Chunking - Executing the processor piece of logic remotely.
JSR-352 provides two options for scaling batch jobs. Both options support only a single JVM:
- Split - Same as Spring Batch
- Partitioning - Conceptually the same as Spring Batch however implemented slightly different.
. Partitioning
Conceptually, partitioning in JSR-352 is the same as it is in Spring Batch. Meta-data is provided to each worker to identify the input to be processed, with the workers reporting back to the manager the results upon completion. However, there are some important differences:
- Partitioned
Batchlet
- This will run multiple instances of the configuredBatchlet
on multiple threads. Each instance will have it’s own set of properties as provided by the JSL or thePartitionPlan
PartitionPlan
- With Spring Batch’s partitioning, anExecutionContext
is provided for each partition. With JSR-352, a singlejavax.batch.api.partition.PartitionPlan
is provided with an array ofProperties
providing the meta-data for each partition.PartitionMapper
- JSR-352 provides two ways to generate partition meta-data. One is via the JSL (partition properties). The second is via an implementation of thejavax.batch.api.partition.PartitionMapper
interface. Functionally, this interface is similar to theorg.springframework.batch.core.partition.support.Partitioner
interface provided by Spring Batch in that it provides a way to programmatically generate meta-data for partitioning.StepExecutions
- In Spring Batch, partitioned steps are run as manager/worker. Within JSR-352, the same configuration occurs. However, the worker steps do not get officialStepExecutions
. Because of that, calls toJsrJobOperator#getStepExecutions(long jobExecutionId)
will only return theStepExecution
for the manager.
The child |
-
Compensating logic - Since Spring Batch implements the manager/worker logic of
partitioning using steps,
StepExecutionListeners
can be used to handle compensating logic if something goes wrong. However, since the workers JSR-352 provides a collection of other components for the ability to provide compensating logic when errors occur and to dynamically set the exit status. These components include the following:
Artifact Interface |
Description |
|
Provides a way for worker steps to send information back to the manager. There is one instance per worker thread. |
|
End point that receives the information collected by the
|
|
Provides the ability to provide compensating logic for a partitioned step. |
.10. Testing
Since all JSR-352 based jobs are executed asynchronously, it can be difficult to determine when a job has
completed. To help with testing, Spring Batch provides the
org.springframework.batch.test.JsrTestUtils
. This utility class provides the
ability to start a job and restart a job and wait for it to complete. Once the job completes, the
associated JobExecution
is returned.
Spring Batch Integration
.1. Spring Batch Integration Introduction
Many users of Spring Batch may encounter requirements that are outside the scope of Spring Batch but that may be efficiently and concisely implemented by using Spring Integration. Conversely, Spring Integration users may encounter Spring Batch requirements and need a way to efficiently integrate both frameworks. In this context, several patterns and use-cases emerge, and Spring Batch Integration addresses those requirements.
The line between Spring Batch and Spring Integration is not always clear, but two pieces of advice can help: Think about granularity, and apply common patterns. Some of those common patterns are described in this reference manual section.
Adding messaging to a batch process enables automation of operations and also separation and strategizing of key concerns. For example, a message might trigger a job to execute, and then the sending of the message can be exposed in a variety of ways. Alternatively, when a job completes or fails, that event might trigger a message to be sent, and the consumers of those messages might have operational concerns that have nothing to do with the application itself. Messaging can also be embedded in a job (for example reading or writing items for processing via channels). Remote partitioning and remote chunking provide methods to distribute workloads over a number of workers.
This section covers the following key concepts:
. Launching Batch Jobs through Messages
When starting batch jobs by using the core Spring Batch API, you basically have 2 options:
-
From the command line, with the
CommandLineJobRunner
- Programmatically, with either
JobOperator.start()
orJobLauncher.run()
For example, you may want to use the
CommandLineJobRunner
when invoking Batch Jobs by
using a shell script. Alternatively, you may use the
JobOperator
directly (for example, when using
Spring Batch as part of a web application). However, what about
more complex use cases? Maybe you need to poll a remote (S)FTP
server to retrieve the data for the Batch Job or your application
has to support multiple different data sources simultaneously. For
example, you may receive data files not only from the web, but also from
FTP and other sources. Maybe additional transformation of the input files is
needed before invoking Spring Batch.
Therefore, it would be much more powerful to execute the batch job
using Spring Integration and its numerous adapters. For example,
you can use a File Inbound Channel Adapter to
monitor a directory in the file-system and start the Batch Job as
soon as the input file arrives. Additionally, you can create Spring
Integration flows that use multiple different adapters to easily
ingest data for your batch jobs from multiple sources
simultaneously using only configuration. Implementing all these
scenarios with Spring Integration is easy, as it allows for
decoupled, event-driven execution of the
JobLauncher
.
Spring Batch Integration provides the
JobLaunchingMessageHandler
class that you can
use to launch batch jobs. The input for the
JobLaunchingMessageHandler
is provided by a
Spring Integration message, which has a payload of type
JobLaunchRequest
. This class is a wrapper around the Job
that needs to be launched and around the JobParameters
necessary to launch the Batch job.
Transforming a file into a JobLaunchRequest
package io.spring.sbi;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.integration.launch.JobLaunchRequest;
import org.springframework.integration.annotation.Transformer;
import org.springframework.messaging.Message;
import java.io.File;
public class FileMessageToJobRequest {
private Job job;
private String fileParameterName;
public void setFileParameterName(String fileParameterName) {
this.fileParameterName = fileParameterName;
}
public void setJob(Job job) {
this.job = job;
}
@Transformer
public JobLaunchRequest toRequest(Message<File> message) {
JobParametersBuilder jobParametersBuilder =
new JobParametersBuilder();
jobParametersBuilder.addString(fileParameterName,
message.getPayload().getAbsolutePath());
return new JobLaunchRequest(job, jobParametersBuilder.toJobParameters());
}
}
The JobExecution
Response
When a batch job is being executed, a
JobExecution
instance is returned. This
instance can be used to determine the status of an execution. If
a JobExecution
is able to be created
successfully, it is always returned, regardless of whether
or not the actual execution is successful.
The exact behavior on how the JobExecution
instance is returned depends on the provided
TaskExecutor
. If a
synchronous
(single-threaded)
TaskExecutor
implementation is used, the
JobExecution
response is returned only
after
the job completes. When using an
asynchronous
TaskExecutor
, the
JobExecution
instance is returned
immediately. Users can then take the id
of
JobExecution
instance
(with JobExecution.getJobId()
) and query the
JobRepository
for the job’s updated status
using the JobExplorer
. For more
information, please refer to the Spring
Batch reference documentation on
Querying the Repository.
Spring Batch Integration Configuration
Consider a case where someone needs to create a file inbound-channel-adapter
to listen
for CSV files in the provided directory, hand them off to a transformer
(FileMessageToJobRequest
), launch the job through the Job Launching Gateway, and then
log the output of the JobExecution
with the logging-channel-adapter
.
The following example shows how that common case can be configured in Java:
@Bean
public FileMessageToJobRequest fileMessageToJobRequest() {
FileMessageToJobRequest fileMessageToJobRequest = new FileMessageToJobRequest();
fileMessageToJobRequest.setFileParameterName("input.file.name");
fileMessageToJobRequest.setJob(personJob());
return fileMessageToJobRequest;
}
@Bean
public JobLaunchingGateway jobLaunchingGateway() {
SimpleJobLauncher simpleJobLauncher = new SimpleJobLauncher();
simpleJobLauncher.setJobRepository(jobRepository);
simpleJobLauncher.setTaskExecutor(new SyncTaskExecutor());
JobLaunchingGateway jobLaunchingGateway = new JobLaunchingGateway(simpleJobLauncher);
return jobLaunchingGateway;
}
@Bean
public IntegrationFlow integrationFlow(JobLaunchingGateway jobLaunchingGateway) {
return IntegrationFlows.from(Files.inboundAdapter(new File("/tmp/myfiles")).
filter(new SimplePatternFileListFilter("*.csv")),
c -> c.poller(Pollers.fixedRate(1000).maxMessagesPerPoll(1))).
transform(fileMessageToJobRequest()).
handle(jobLaunchingGateway).
log(LoggingHandler.Level.WARN, "headers.id + ': ' + payload").
get();
}
Example ItemReader Configuration
Now that we are polling for files and launching jobs, we need to configure our Spring
Batch ItemReader
(for example) to use the files found at the location defined by the job
parameter called "input.file.name", as shown in the following bean configuration:
The following Java example shows the necessary bean configuration:
@Bean
@StepScope
public ItemReader sampleReader(@Value("#{jobParameters[input.file.name]}") String resource) {
...
FlatFileItemReader flatFileItemReader = new FlatFileItemReader();
flatFileItemReader.setResource(new FileSystemResource(resource));
...
return flatFileItemReader;
}
The main points of interest in the preceding example are injecting the value of
#{jobParameters['input.file.name']}
as the Resource property value and setting the ItemReader
bean
to have Step scope. Setting the bean to have Step scope takes advantage of
the late binding support, which allows access to the
jobParameters
variable.
.2. Available Attributes of the Job-Launching Gateway
The job-launching gateway has the following attributes that you can set to control a job:
id
: Identifies the underlying Spring bean definition, which is an instance of either:- EventDrivenConsumer
PollingConsumer
(The exact implementation depends on whether the component’s input channel is aSubscribableChannel
orPollableChannel
.)auto-startup
: Boolean flag to indicate that the endpoint should start automatically on startup. The default is true.request-channel
: The inputMessageChannel
of this endpoint.reply-channel
:MessageChannel
to which the resultingJobExecution
payload is sent.reply-timeout
: Lets you specify how long (in milliseconds) this gateway waits for the reply message to be sent successfully to the reply channel before throwing an exception. This attribute only applies when the channel might block (for example, when using a bounded queue channel that is currently full). Also, keep in mind that, when sending to aDirectChannel
, the invocation occurs in the sender’s thread. Therefore, the failing of the send operation may be caused by other components further downstream. Thereply-timeout
attribute maps to thesendTimeout
property of the underlyingMessagingTemplate
instance. If not specified, the attribute defaults to<emphasis>-1</emphasis>, meaning that, by default, theGateway
waits indefinitely.job-launcher
: Optional. Accepts a customJobLauncher
bean reference. If not specified the adapter re-uses the instance that is registered under theid
ofjobLauncher
. If no default instance exists, an exception is thrown.order
: Specifies the order of invocation when this endpoint is connected as a subscriber to aSubscribableChannel
.
.3. Sub-Elements
When this Gateway
is receiving messages from a
PollableChannel
, you must either provide
a global default Poller
or provide a Poller
sub-element to the
Job Launching Gateway
.
The following example shows how to provide a poller in Java:
@Bean
@ServiceActivator(inputChannel = "queueChannel", poller = @Poller(fixedRate="1000"))
public JobLaunchingGateway sampleJobLaunchingGateway() {
JobLaunchingGateway jobLaunchingGateway = new JobLaunchingGateway(jobLauncher());
jobLaunchingGateway.setOutputChannel(replyChannel());
return jobLaunchingGateway;
}
. Providing Feedback with Informational Messages
As Spring Batch jobs can run for long times, providing progress information is often critical. For example, stake-holders may want to be notified if some or all parts of a batch job have failed. Spring Batch provides support for this information being gathered through:
- Active polling
- Event-driven listeners
When starting a Spring Batch job asynchronously (for example, by using the Job Launching
Gateway
), a JobExecution
instance is returned. Thus, JobExecution.getJobId()
can be
used to continuously poll for status updates by retrieving updated instances of the
JobExecution
from the JobRepository
by using the JobExplorer
. However, this is
considered sub-optimal, and an event-driven approach should be preferred.
Therefore, Spring Batch provides listeners, including the three most commonly used listeners:
- StepListener
- ChunkListener
- JobExecutionListener
. Asynchronous Processors
Asynchronous Processors help you to scale the processing of items. In the asynchronous
processor use case, an AsyncItemProcessor
serves as a dispatcher, executing the logic of
the ItemProcessor
for an item on a new thread. Once the item completes, the Future
is
passed to the AsynchItemWriter
to be written.
Therefore, you can increase performance by using asynchronous item processing, basically
letting you implement fork-join scenarios. The AsyncItemWriter
gathers the results and
writes back the chunk as soon as all the results become available.
@Bean
public AsyncItemProcessor processor(ItemProcessor itemProcessor, TaskExecutor taskExecutor) {
AsyncItemProcessor asyncItemProcessor = new AsyncItemProcessor();
asyncItemProcessor.setTaskExecutor(taskExecutor);
asyncItemProcessor.setDelegate(itemProcessor);
return asyncItemProcessor;
}
The delegate
property refers to your ItemProcessor
bean, and the taskExecutor
property refers to the TaskExecutor
of your choice.
The following example shows how to configure the AsyncItemWriter
in Java:
@Bean
public AsyncItemWriter writer(ItemWriter itemWriter) {
AsyncItemWriter asyncItemWriter = new AsyncItemWriter();
asyncItemWriter.setDelegate(itemWriter);
return asyncItemWriter;
}
Again, the delegate
property is
actually a reference to your ItemWriter
bean.
Appendix A: List of ItemReaders and ItemWriters
A.1. Item Readers
Item Reader | Description |
---|---|
AbstractItemCountingItemStreamItemReader |
Abstract base class that provides basic
restart capabilities by counting the number of items returned from
an |
AggregateItemReader |
An |
AmqpItemReader |
Given a Spring |
KafkaItemReader |
An |
FlatFileItemReader |
Reads from a flat file. Includes |
HibernateCursorItemReader |
Reads from a cursor based on an HQL query. See
|
HibernatePagingItemReader |
Reads from a paginated HQL query |
ItemReaderAdapter |
Adapts any class to the
|
JdbcCursorItemReader |
Reads from a database cursor via JDBC. See
|
JdbcPagingItemReader |
Given an SQL statement, pages through the rows, such that large datasets can be read without running out of memory. |
JmsItemReader |
Given a Spring |
JpaPagingItemReader |
Given a JPQL statement, pages through the rows, such that large datasets can be read without running out of memory. |
ListItemReader |
Provides the items from a list, one at a time. |
MongoItemReader |
Given a |
Neo4jItemReader |
Given a |
RepositoryItemReader |
Given a Spring Data |
StoredProcedureItemReader |
Reads from a database cursor resulting from the
execution of a database stored procedure. See |
StaxEventItemReader |
Reads via StAX. see |
JsonItemReader |
Reads items from a Json document. see |
A.2. Item Writers
Item Writer | Description |
---|---|
AbstractItemStreamItemWriter |
Abstract base class that combines the
|
AmqpItemWriter |
Given a Spring |
CompositeItemWriter |
Passes an item to the |
FlatFileItemWriter |
Writes to a flat file. Includes |
GemfireItemWriter |
Using a |
HibernateItemWriter |
This item writer is Hibernate-session aware and handles some transaction-related work that a non-"hibernate-aware" item writer would not need to know about and then delegates to another item writer to do the actual writing. |
ItemWriterAdapter |
Adapts any class to the
|
JdbcBatchItemWriter |
Uses batching features from a
|
JmsItemWriter |
Using a |
JpaItemWriter |
This item writer is JPA EntityManager-aware
and handles some transaction-related work that a non-"JPA-aware"
|
KafkaItemWriter |
Using a |
MimeMessageItemWriter |
Using Spring’s |
MongoItemWriter |
Given a |
Neo4jItemWriter |
Given a |
PropertyExtractingDelegatingItemWriter |
Extends |
RepositoryItemWriter |
Given a Spring Data |
StaxEventItemWriter |
Uses a |
JsonFileItemWriter |
Uses a |
Appendix B: Meta-Data Schema
B.1. Overview
The Spring Batch Metadata tables closely match the Domain objects that represent them in
Java. For example, JobInstance
, JobExecution
, JobParameters
, and StepExecution
map to BATCH_JOB_INSTANCE
, BATCH_JOB_EXECUTION
, BATCH_JOB_EXECUTION_PARAMS
, and
BATCH_STEP_EXECUTION
, respectively. ExecutionContext
maps to both
BATCH_JOB_EXECUTION_CONTEXT
and BATCH_STEP_EXECUTION_CONTEXT
. The JobRepository
is
responsible for saving and storing each Java object into its correct table. This appendix
describes the metadata tables in detail, along with many of the design decisions that
were made when creating them. When viewing the various table creation statements below,
it is important to realize that the data types used are as generic as possible. Spring
Batch provides many schemas as examples, all of which have varying data types, due to
variations in how individual database vendors handle data types. The following image
shows an ERD model of all 6 tables and their relationships to one another:
B.1.1. Example DDL Scripts
The Spring Batch Core JAR file contains example scripts to create the relational tables
for a number of database platforms (which are, in turn, auto-detected by the job
repository factory bean or namespace equivalent). These scripts can be used as is or
modified with additional indexes and constraints as desired. The file names are in the
form schema-*.sql
, where "*" is the short name of the target database platform.
The scripts are in the package org.springframework.batch.core
.
B.1.2. Migration DDL Scripts
Spring Batch provides migration DDL scripts that you need to execute when you upgrade versions.
These scripts can be found in the Core Jar file under org/springframework/batch/core/migration
.
Migration scripts are organized into folders corresponding to version numbers in which they were introduced:
2.2
: contains scripts needed if you are migrating from a version before2.2
to version2.2
4.1
: contains scripts needed if you are migrating from a version before4.1
to version4.1
B.1.3. Version
Many of the database tables discussed in this appendix contain a version column. This
column is important because Spring Batch employs an optimistic locking strategy when
dealing with updates to the database. This means that each time a record is 'touched'
(updated) the value in the version column is incremented by one. When the repository goes
back to save the value, if the version number has changed it throws an
OptimisticLockingFailureException
, indicating there has been an error with concurrent
access. This check is necessary, since, even though different batch jobs may be running
in different machines, they all use the same database tables.
B.1.4. Identity
BATCH_JOB_INSTANCE
, BATCH_JOB_EXECUTION
, and BATCH_STEP_EXECUTION
each contain
columns ending in _ID
. These fields act as primary keys for their respective tables.
However, they are not database generated keys. Rather, they are generated by separate
sequences. This is necessary because, after inserting one of the domain objects into the
database, the key it is given needs to be set on the actual object so that they can be
uniquely identified in Java. Newer database drivers (JDBC 3.0 and up) support this
feature with database-generated keys. However, rather than require that feature,
sequences are used. Each variation of the schema contains some form of the following
statements:
CREATE SEQUENCE BATCH_STEP_EXECUTION_SEQ;
CREATE SEQUENCE BATCH_JOB_EXECUTION_SEQ;
CREATE SEQUENCE BATCH_JOB_SEQ;
Many database vendors do not support sequences. In these cases, work-arounds are used, such as the following statements for MySQL:
CREATE TABLE BATCH_STEP_EXECUTION_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_STEP_EXECUTION_SEQ values(0);
CREATE TABLE BATCH_JOB_EXECUTION_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_JOB_EXECUTION_SEQ values(0);
CREATE TABLE BATCH_JOB_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_JOB_SEQ values(0);
In the preceding case, a table is used in place of each sequence. The Spring core class,
MySQLMaxValueIncrementer
, then increments the one column in this sequence in order to
give similar functionality.
B.2. BATCH_JOB_INSTANCE
The BATCH_JOB_INSTANCE
table holds all information relevant to a JobInstance
, and
serves as the top of the overall hierarchy. The following generic DDL statement is used
to create it:
CREATE TABLE BATCH_JOB_INSTANCE (
JOB_INSTANCE_ID BIGINT PRIMARY KEY ,
VERSION BIGINT,
JOB_NAME VARCHAR(100) NOT NULL ,
JOB_KEY VARCHAR(2500)
);
The following list describes each column in the table:
JOB_INSTANCE_ID
: The unique ID that identifies the instance. It is also the primary key. The value of this column should be obtainable by calling thegetId
method onJobInstance
.VERSION
: See Version.JOB_NAME
: Name of the job obtained from theJob
object. Because it is required to identify the instance, it must not be null.JOB_KEY
: A serialization of theJobParameters
that uniquely identifies separate instances of the same job from one another. (JobInstances
with the same job name must have differentJobParameters
and, thus, differentJOB_KEY
values).
B.3. BATCH_JOB_EXECUTION_PARAMS
The BATCH_JOB_EXECUTION_PARAMS
table holds all information relevant to the
JobParameters
object. It contains 0 or more key/value pairs passed to a Job
and
serves as a record of the parameters with which a job was run. For each parameter that
contributes to the generation of a job’s identity, the IDENTIFYING
flag is set to true.
Note that the table has been denormalized. Rather than creating a separate table for each
type, there is one table with a column indicating the type, as shown in the following
listing:
CREATE TABLE BATCH_JOB_EXECUTION_PARAMS (
JOB_EXECUTION_ID BIGINT NOT NULL ,
TYPE_CD VARCHAR(6) NOT NULL ,
KEY_NAME VARCHAR(100) NOT NULL ,
STRING_VAL VARCHAR(250) ,
DATE_VAL DATETIME DEFAULT NULL ,
LONG_VAL BIGINT ,
DOUBLE_VAL DOUBLE PRECISION ,
IDENTIFYING CHAR(1) NOT NULL ,
constraint JOB_EXEC_PARAMS_FK foreign key (JOB_EXECUTION_ID)
references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
);
The following list describes each column:
JOB_EXECUTION_ID
: Foreign key from theBATCH_JOB_EXECUTION
table that indicates the job execution to which the parameter entry belongs. Note that multiple rows (that is, key/value pairs) may exist for each execution.- TYPE_CD: String representation of the type of value stored, which can be a string, a date, a long, or a double. Because the type must be known, it cannot be null.
- KEY_NAME: The parameter key.
- STRING_VAL: Parameter value, if the type is string.
- DATE_VAL: Parameter value, if the type is date.
- LONG_VAL: Parameter value, if the type is long.
- DOUBLE_VAL: Parameter value, if the type is double.
- IDENTIFYING: Flag indicating whether the parameter contributed to the identity of the
related
JobInstance
.
Note that there is no primary key for this table. This is because the framework has no use for one and, thus, does not require it. If need be, you can add a primary key may be added with a database generated key without causing any issues to the framework itself.
B.4. BATCH_JOB_EXECUTION
The BATCH_JOB_EXECUTION
table holds all information relevant to the JobExecution
object. Every time a Job
is run, there is always a new JobExecution
, and a new row in
this table. The following listing shows the definition of the BATCH_JOB_EXECUTION
table:
CREATE TABLE BATCH_JOB_EXECUTION (
JOB_EXECUTION_ID BIGINT PRIMARY KEY ,
VERSION BIGINT,
JOB_INSTANCE_ID BIGINT NOT NULL,
CREATE_TIME TIMESTAMP NOT NULL,
START_TIME TIMESTAMP DEFAULT NULL,
END_TIME TIMESTAMP DEFAULT NULL,
STATUS VARCHAR(10),
EXIT_CODE VARCHAR(20),
EXIT_MESSAGE VARCHAR(2500),
LAST_UPDATED TIMESTAMP,
JOB_CONFIGURATION_LOCATION VARCHAR(2500) NULL,
constraint JOB_INSTANCE_EXECUTION_FK foreign key (JOB_INSTANCE_ID)
references BATCH_JOB_INSTANCE(JOB_INSTANCE_ID)
) ;
The following list describes each column:
JOB_EXECUTION_ID
: Primary key that uniquely identifies this execution. The value of this column is obtainable by calling thegetId
method of theJobExecution
object.VERSION
: See Version.JOB_INSTANCE_ID
: Foreign key from theBATCH_JOB_INSTANCE
table. It indicates the instance to which this execution belongs. There may be more than one execution per instance.CREATE_TIME
: Timestamp representing the time when the execution was created.START_TIME
: Timestamp representing the time when the execution was started.END_TIME
: Timestamp representing the time when the execution finished, regardless of success or failure. An empty value in this column when the job is not currently running indicates that there has been some type of error and the framework was unable to perform a last save before failing.STATUS
: Character string representing the status of the execution. This may beCOMPLETED
,STARTED
, and others. The object representation of this column is theBatchStatus
enumeration.EXIT_CODE
: Character string representing the exit code of the execution. In the case of a command-line job, this may be converted into a number.EXIT_MESSAGE
: Character string representing a more detailed description of how the job exited. In the case of failure, this might include as much of the stack trace as is possible.LAST_UPDATED
: Timestamp representing the last time this execution was persisted.
B.5. BATCH_STEP_EXECUTION
The BATCH_STEP_EXECUTION table holds all information relevant to the StepExecution
object. This table is similar in many ways to the BATCH_JOB_EXECUTION
table, and there
is always at least one entry per Step
for each JobExecution
created. The following
listing shows the definition of the BATCH_STEP_EXECUTION
table:
CREATE TABLE BATCH_STEP_EXECUTION (
STEP_EXECUTION_ID BIGINT PRIMARY KEY ,
VERSION BIGINT NOT NULL,
STEP_NAME VARCHAR(100) NOT NULL,
JOB_EXECUTION_ID BIGINT NOT NULL,
START_TIME TIMESTAMP NOT NULL ,
END_TIME TIMESTAMP DEFAULT NULL,
STATUS VARCHAR(10),
COMMIT_COUNT BIGINT ,
READ_COUNT BIGINT ,
FILTER_COUNT BIGINT ,
WRITE_COUNT BIGINT ,
READ_SKIP_COUNT BIGINT ,
WRITE_SKIP_COUNT BIGINT ,
PROCESS_SKIP_COUNT BIGINT ,
ROLLBACK_COUNT BIGINT ,
EXIT_CODE VARCHAR(20) ,
EXIT_MESSAGE VARCHAR(2500) ,
LAST_UPDATED TIMESTAMP,
constraint JOB_EXECUTION_STEP_FK foreign key (JOB_EXECUTION_ID)
references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
) ;
The following list describes for each column:
STEP_EXECUTION_ID
: Primary key that uniquely identifies this execution. The value of this column should be obtainable by calling thegetId
method of theStepExecution
object.VERSION
: See Version.STEP_NAME
: The name of the step to which this execution belongs.JOB_EXECUTION_ID
: Foreign key from theBATCH_JOB_EXECUTION
table. It indicates theJobExecution
to which thisStepExecution
belongs. There may be only oneStepExecution
for a givenJobExecution
for a givenStep
name.START_TIME
: Timestamp representing the time when the execution was started.END_TIME
: Timestamp representing the time the when execution was finished, regardless of success or failure. An empty value in this column, even though the job is not currently running, indicates that there has been some type of error and the framework was unable to perform a last save before failing.STATUS
: Character string representing the status of the execution. This may beCOMPLETED
,STARTED
, and others. The object representation of this column is theBatchStatus
enumeration.COMMIT_COUNT
: The number of times in which the step has committed a transaction during this execution.READ_COUNT
: The number of items read during this execution.FILTER_COUNT
: The number of items filtered out of this execution.WRITE_COUNT
: The number of items written and committed during this execution.READ_SKIP_COUNT
: The number of items skipped on read during this execution.WRITE_SKIP_COUNT
: The number of items skipped on write during this execution.PROCESS_SKIP_COUNT
: The number of items skipped during processing during this execution.ROLLBACK_COUNT
: The number of rollbacks during this execution. Note that this count includes each time rollback occurs, including rollbacks for retry and those in the skip recovery procedure.EXIT_CODE
: Character string representing the exit code of the execution. In the case of a command-line job, this may be converted into a number.EXIT_MESSAGE
: Character string representing a more detailed description of how the job exited. In the case of failure, this might include as much of the stack trace as is possible.LAST_UPDATED
: Timestamp representing the last time this execution was persisted.
B.6. BATCH_JOB_EXECUTION_CONTEXT
The BATCH_JOB_EXECUTION_CONTEXT
table holds all information relevant to the
ExecutionContext
of a Job
. There is exactly one Job
ExecutionContext
per
JobExecution
, and it contains all of the job-level data that is needed for a particular
job execution. This data typically represents the state that must be retrieved after a
failure, so that a JobInstance
can "start from where it left off". The following
listing shows the definition of the BATCH_JOB_EXECUTION_CONTEXT
table:
CREATE TABLE BATCH_JOB_EXECUTION_CONTEXT (
JOB_EXECUTION_ID BIGINT PRIMARY KEY,
SHORT_CONTEXT VARCHAR(2500) NOT NULL,
SERIALIZED_CONTEXT CLOB,
constraint JOB_EXEC_CTX_FK foreign key (JOB_EXECUTION_ID)
references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
) ;
The following list describes each column:
JOB_EXECUTION_ID
: Foreign key representing theJobExecution
to which the context belongs. There may be more than one row associated with a given execution.SHORT_CONTEXT
: A string version of theSERIALIZED_CONTEXT
.SERIALIZED_CONTEXT
: The entire context, serialized.
B.7. BATCH_STEP_EXECUTION_CONTEXT
The BATCH_STEP_EXECUTION_CONTEXT
table holds all information relevant to the
ExecutionContext
of a Step
. There is exactly one ExecutionContext
per
StepExecution
, and it contains all of the data that
needs to be persisted for a particular step execution. This data typically represents the
state that must be retrieved after a failure, so that a JobInstance
can 'start from
where it left off'. The following listing shows the definition of the
BATCH_STEP_EXECUTION_CONTEXT
table:
CREATE TABLE BATCH_STEP_EXECUTION_CONTEXT (
STEP_EXECUTION_ID BIGINT PRIMARY KEY,
SHORT_CONTEXT VARCHAR(2500) NOT NULL,
SERIALIZED_CONTEXT CLOB,
constraint STEP_EXEC_CTX_FK foreign key (STEP_EXECUTION_ID)
references BATCH_STEP_EXECUTION(STEP_EXECUTION_ID)
) ;
The following list describes each column:
STEP_EXECUTION_ID
: Foreign key representing theStepExecution
to which the context belongs. There may be more than one row associated to a given execution.SHORT_CONTEXT
: A string version of theSERIALIZED_CONTEXT
.SERIALIZED_CONTEXT
: The entire context, serialized.
B.8. Archiving
Because there are entries in multiple tables every time a batch job is run, it is common to create an archive strategy for the metadata tables. The tables themselves are designed to show a record of what happened in the past and generally do not affect the run of any job, with a few notable exceptions pertaining to restart:
-
The framework uses the metadata tables to determine whether a particular
JobInstance
has been run before. If it has been run and if the job is not restartable, then an exception is thrown. -
If an entry for a
JobInstance
is removed without having completed successfully, the framework thinks that the job is new rather than a restart. -
If a job is restarted, the framework uses any data that has been persisted to the
ExecutionContext
to restore theJob’s
state. Therefore, removing any entries from this table for jobs that have not completed successfully prevents them from starting at the correct point if run again.
B.9. International and Multi-byte Characters
If you are using multi-byte character sets (such as Chinese or Cyrillic) in your business
processing, then those characters might need to be persisted in the Spring Batch schema.
Many users find that simply changing the schema to double the length of the VARCHAR
columns is enough. Others prefer to configure the
JobRepository with max-varchar-length
half the
value of the VARCHAR
column length. Some users have also reported that they use
NVARCHAR
in place of VARCHAR
in their schema definitions. The best result depends on
the database platform and the way the database server has been configured locally.
B.10. Recommendations for Indexing Meta Data Tables
Spring Batch provides DDL samples for the metadata tables in the core jar file for
several common database platforms. Index declarations are not included in that DDL,
because there are too many variations in how users may want to index, depending on their
precise platform, local conventions, and the business requirements of how the jobs are
operated. The following below provides some indication as to which columns are going to
be used in a WHERE
clause by the DAO implementations provided by Spring Batch and how
frequently they might be used, so that individual projects can make up their own minds
about indexing:
Default Table Name |
Where Clause |
Frequency |
BATCH_JOB_INSTANCE |
JOB_NAME = ? and JOB_KEY = ? |
Every time a job is launched |
BATCH_JOB_EXECUTION |
JOB_INSTANCE_ID = ? |
Every time a job is restarted |
BATCH_STEP_EXECUTION |
VERSION = ? |
On commit interval, a.k.a. chunk (and at start and end of step) |
BATCH_STEP_EXECUTION |
STEP_NAME = ? and JOB_EXECUTION_ID = ? |
Before each step execution |
Appendix C: Batch Processing and Transactions
C.1. Simple Batching with No Retry
Consider the following simple example of a nested batch with no retries. It shows a common scenario for batch processing: An input source is processed until exhausted, and we commit periodically at the end of a "chunk" of processing.
1 | REPEAT(until=exhausted) { | 2 | TX { 3 | REPEAT(size=5) { 3.1 | input; 3.2 | output; | } | } | | }
The input operation (3.1) could be a message-based receive (such as from JMS), or a file-based read, but to recover and continue processing with a chance of completing the whole job, it must be transactional. The same applies to the operation at 3.2. It must be either transactional or idempotent.
If the chunk at REPEAT
(3) fails because of a database exception at 3.2, then TX
(2)
must roll back the whole chunk.
C.2. Simple Stateless Retry
It is also useful to use a retry for an operation which is not transactional, such as a call to a web-service or other remote resource, as shown in the following example:
0 | TX { 1 | input; 1.1 | output; 2 | RETRY { 2.1 | remote access; | } | }
This is actually one of the most useful applications of a retry, since a remote call is
much more likely to fail and be retryable than a database update. As long as the remote
access (2.1) eventually succeeds, the transaction, TX
(0), commits. If the remote
access (2.1) eventually fails, then the transaction, TX
(0), is guaranteed to roll
back.
C.3. Typical Repeat-Retry Pattern
The most typical batch processing pattern is to add a retry to the inner block of the chunk, as shown in the following example:
1 | REPEAT(until=exhausted, exception=not critical) { | 2 | TX { 3 | REPEAT(size=5) { | 4 | RETRY(stateful, exception=deadlock loser) { 4.1 | input; 5 | } PROCESS { 5.1 | output; 6 | } SKIP and RECOVER { | notify; | } | | } | } | | }
The inner RETRY
(4) block is marked as "stateful". See the
typical use case for a description of a stateful retry. This means that if the
retry PROCESS
(5) block fails, the behavior of the RETRY
(4) is as follows:
-
Throw an exception, rolling back the transaction,
TX
(2), at the chunk level, and allowing the item to be re-presented to the input queue. -
When the item re-appears, it might be retried depending on the retry policy in place, executing
PROCESS
(5) again. The second and subsequent attempts might fail again and re-throw the exception. -
Eventually, the item reappears for the final time. The retry policy disallows another attempt, so
PROCESS
(5) is never executed. In this case, we follow theRECOVER
(6) path, effectively "skipping" the item that was received and is being processed.
Note that the notation used for the RETRY
(4) in the plan above explicitly shows that
the input step (4.1) is part of the retry. It also makes clear that there are two
alternate paths for processing: the normal case, as denoted by PROCESS
(5), and the
recovery path, as denoted in a separate block by RECOVER
(6). The two alternate paths
are completely distinct. Only one is ever taken in normal circumstances.
In special cases (such as a special TranscationValidException
type), the retry policy
might be able to determine that the RECOVER
(6) path can be taken on the last attempt
after PROCESS
(5) has just failed, instead of waiting for the item to be re-presented.
This is not the default behavior, because it requires detailed knowledge of what has
happened inside the PROCESS
(5) block, which is not usually available. For example, if
the output included write access before the failure, then the exception should be
re-thrown to ensure transactional integrity.
The completion policy in the outer REPEAT
(1) is crucial to the success of the above
plan. If the output (5.1) fails, it may throw an exception (it usually does, as
described), in which case the transaction, TX
(2), fails, and the exception could
propagate up through the outer batch REPEAT
(1). We do not want the whole batch to
stop, because the RETRY
(4) might still be successful if we try again, so we add
exception=not critical
to the outer REPEAT
(1).
Note, however, that if the TX
(2) fails and we do try again, by virtue of the outer
completion policy, the item that is next processed in the inner REPEAT
(3) is not
guaranteed to be the one that just failed. It might be, but it depends on the
implementation of the input (4.1). Thus, the output (5.1) might fail again on either a
new item or the old one. The client of the batch should not assume that each RETRY
(4)
attempt is going to process the same items as the last one that failed. For example, if
the termination policy for REPEAT
(1) is to fail after 10 attempts, it fails after 10
consecutive attempts but not necessarily at the same item. This is consistent with the
overall retry strategy. The inner RETRY
(4) is aware of the history of each item and
can decide whether or not to have another attempt at it.
C.4. Asynchronous Chunk Processing
The inner batches or chunks in the typical example can be executed
concurrently by configuring the outer batch to use an AsyncTaskExecutor
. The outer
batch waits for all the chunks to complete before completing. The following example shows
asynchronous chunk processing:
1 | REPEAT(until=exhausted, concurrent, exception=not critical) { | 2 | TX { 3 | REPEAT(size=5) { | 4 | RETRY(stateful, exception=deadlock loser) { 4.1 | input; 5 | } PROCESS { | output; 6 | } RECOVER { | recover; | } | | } | } | | }
C.5. Asynchronous Item Processing
The individual items in chunks in the typical example can also, in principle, be processed concurrently. In this case, the transaction boundary has to move to the level of the individual item, so that each transaction is on a single thread, as shown in the following example:
1 | REPEAT(until=exhausted, exception=not critical) { | 2 | REPEAT(size=5, concurrent) { | 3 | TX { 4 | RETRY(stateful, exception=deadlock loser) { 4.1 | input; 5 | } PROCESS { | output; 6 | } RECOVER { | recover; | } | } | | } | | }
This plan sacrifices the optimization benefit, which the simple plan had, of having all the transactional resources chunked together. It is only useful if the cost of the processing (5) is much higher than the cost of transaction management (3).
C.6. Interactions Between Batching and Transaction Propagation
There is a tighter coupling between batch-retry and transaction management than we would ideally like. In particular, a stateless retry cannot be used to retry database operations with a transaction manager that does not support NESTED propagation.
The following example uses retry without repeat:
1 | TX { | 1.1 | input; 2.2 | database access; 2 | RETRY { 3 | TX { 3.1 | database access; | } | } | | }
Again, and for the same reason, the inner transaction, TX
(3), can cause the outer
transaction, TX
(1), to fail, even if the RETRY
(2) is eventually successful.
Unfortunately, the same effect percolates from the retry block up to the surrounding repeat batch if there is one, as shown in the following example:
1 | TX { | 2 | REPEAT(size=5) { 2.1 | input; 2.2 | database access; 3 | RETRY { 4 | TX { 4.1 | database access; | } | } | } | | }
Now, if TX (3) rolls back, it can pollute the whole batch at TX (1) and force it to roll back at the end.
What about non-default propagation?
-
In the preceding example,
PROPAGATION_REQUIRES_NEW
atTX
(3) prevents the outerTX
(1) from being polluted if both transactions are eventually successful. But ifTX
(3) commits andTX
(1) rolls back, thenTX
(3) stays committed, so we violate the transaction contract forTX
(1). IfTX
(3) rolls back,TX
(1) does not necessarily (but it probably does in practice, because the retry throws a roll back exception). PROPAGATION_NESTED
atTX
(3) works as we require in the retry case (and for a batch with skips):TX
(3) can commit but subsequently be rolled back by the outer transaction,TX
(1). IfTX
(3) rolls back,TX
(1) rolls back in practice. This option is only available on some platforms, not including Hibernate or JTA, but it is the only one that consistently works.
Consequently, the NESTED
pattern is best if the retry block contains any database
access.
C.7. Special Case: Transactions with Orthogonal Resources
Default propagation is always OK for simple cases where there are no nested database
transactions. Consider the following example, where the SESSION
and TX
are not
global XA
resources, so their resources are orthogonal:
0 | SESSION { 1 | input; 2 | RETRY { 3 | TX { 3.1 | database access; | } | } | }
Here there is a transactional message SESSION
(0), but it does not participate in other
transactions with PlatformTransactionManager
, so it does not propagate when TX
(3)
starts. There is no database access outside the RETRY
(2) block. If TX
(3) fails and
then eventually succeeds on a retry, SESSION
(0) can commit (independently of a TX
block). This is similar to the vanilla "best-efforts-one-phase-commit" scenario. The
worst that can happen is a duplicate message when the RETRY
(2) succeeds and the
SESSION
(0) cannot commit (for example, because the message system is unavailable).
C.8. Stateless Retry Cannot Recover
The distinction between a stateless and a stateful retry in the typical example above is important. It is actually ultimately a transactional constraint that forces the distinction, and this constraint also makes it obvious why the distinction exists.
We start with the observation that there is no way to skip an item that failed and successfully commit the rest of the chunk unless we wrap the item processing in a transaction. Consequently, we simplify the typical batch execution plan to be as follows:
0 | REPEAT(until=exhausted) { | 1 | TX { 2 | REPEAT(size=5) { | 3 | RETRY(stateless) { 4 | TX { 4.1 | input; 4.2 | database access; | } 5 | } RECOVER { 5.1 | skip; | } | | } | } | | }
The preceding example shows a stateless RETRY
(3) with a RECOVER
(5) path that kicks
in after the final attempt fails. The stateless
label means that the block is repeated
without re-throwing any exception up to some limit. This only works if the transaction,
TX
(4), has propagation NESTED.
If the inner TX
(4) has default propagation properties and rolls back, it pollutes the
outer TX
(1). The inner transaction is assumed by the transaction manager to have
corrupted the transactional resource, so it cannot be used again.
Support for NESTED propagation is sufficiently rare that we choose not to support recovery with stateless retries in the current versions of Spring Batch. The same effect can always be achieved (at the expense of repeating more processing) by using the typical pattern above.
Appendix D: Glossary
Spring Batch Glossary
- Batch
-
An accumulation of business transactions over time.
- Batch Application Style
-
Term used to designate batch as an application style in its own right, similar to online, Web, or SOA. It has standard elements of input, validation, transformation of information to business model, business processing, and output. In addition, it requires monitoring at a macro level.
- Batch Processing
-
The handling of a batch of many business transactions that have accumulated over a period of time (such as an hour, a day, a week, a month, or a year). It is the application of a process or set of processes to many data entities or objects in a repetitive and predictable fashion with either no manual element or a separate manual element for error processing.
- Batch Window
-
The time frame within which a batch job must complete. This can be constrained by other systems coming online, other dependent jobs needing to execute, or other factors specific to the batch environment.
- Step
-
The main batch task or unit of work. It initializes the business logic and controls the transaction environment, based on commit interval setting and other factors.
- Tasklet
-
A component created by an application developer to process the business logic for a Step.
- Batch Job Type
-
Job types describe application of jobs for particular types of processing. Common areas are interface processing (typically flat files), forms processing (either for online PDF generation or print formats), and report processing.
- Driving Query
-
A driving query identifies the set of work for a job to do. The job then breaks that work into individual units of work. For instance, a driving query might be to identify all financial transactions that have a status of "pending transmission" and send them to a partner system. The driving query returns a set of record IDs to process. Each record ID then becomes a unit of work. A driving query may involve a join (if the criteria for selection falls across two or more tables) or it may work with a single table.
- Item
-
An item represents the smallest amount of complete data for processing. In the simplest terms, this might be a line in a file, a row in a database table, or a particular element in an XML file.
- Logicial Unit of Work (LUW)
-
A batch job iterates through a driving query (or other input source, such as a file) to perform the set of work that the job must accomplish. Each iteration of work performed is a unit of work.
- Commit Interval
-
A set of LUWs processed within a single transaction.
- Partitioning
-
Splitting a job into multiple threads where each thread is responsible for a subset of the overall data to be processed. The threads of execution may be within the same JVM or they may span JVMs in a clustered environment that supports workload balancing.
- Staging Table
-
A table that holds temporary data while it is being processed.
- Restartable
-
A job that can be executed again and assumes the same identity as when run initially. In other words, it is has the same job instance ID.
- Rerunnable
-
A job that is restartable and manages its own state in terms of the previous run’s record processing. An example of a rerunnable step is one based on a driving query. If the driving query can be formed so that it limits the processed rows when the job is restarted, then it is re-runnable. This is managed by the application logic. Often, a condition is added to the
where
statement to limit the rows returned by the driving query with logic resembling "and processedFlag!= true". - Repeat
-
One of the most basic units of batch processing, it defines by repeatability calling a portion of code until it is finished and while there is no error. Typically, a batch process would be repeatable as long as there is input.
- Retry
-
Simplifies the execution of operations with retry semantics most frequently associated with handling transactional output exceptions. Retry is slightly different from repeat, rather than continually calling a block of code, retry is stateful and continually calls the same block of code with the same input, until it either succeeds or some type of retry limit has been exceeded. It is only generally useful when a subsequent invocation of the operation might succeed because something in the environment has improved.
- Recover
-
Recover operations handle an exception in such a way that a repeat process is able to continue.
- Skip
Skip is a recovery strategy often used on file input sources as the strategy for ignoring bad input records that failed validation.
0 comments:
Post a Comment